Dal-Hee Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736243/publications.pdf

Version: 2024-02-01

37111 50170 9,534 120 46 96 citations h-index g-index papers 121 121 121 14885 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy. Biomaterials, 2022, 280, 121257.	5.7	16
2	Synthesis of gold nano-mushrooms $\langle i \rangle via \langle j \rangle$ solvent-controlled galvanic replacement to enhance phototherapeutic efficiency. Nanoscale, 2022, 14, 1409-1420.	2.8	6
3	Precursor Heterogeneity Driven Mo–Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS Applied Materials & Interfaces, 2022, 14, 9987-10000.	4.0	O
4	Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing. Journal of Controlled Release, 2022, 345, 108-119.	4.8	9
5	Non-viral, direct neuronal reprogramming from human fibroblast using a polymer-functionalized nanodot. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102316.	1.7	5
6	3D Microfluidic Platform and Tumor Vascular Mapping for Evaluating Anti-Angiogenic RNAi-Based Nanomedicine. ACS Nano, 2021, 15, 338-350.	7.3	34
7	Fluorometric Viral miRNA Nanosensor for Diagnosis of Productive (Lytic) Human Cytomegalovirus Infection in Living Cells. ACS Sensors, 2021, 6, 815-822.	4.0	14
8	Identification of a Direct-Acting Antiviral Agent Targeting RNA Helicase via a Graphene Oxide Nanobiosensor. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25715-25726.	4.0	7
9	A graphene oxide-based fluorescent nanosensor to identify antiviral agents via a drug repurposing screen. Biosensors and Bioelectronics, 2021, 183, 113208.	5.3	11
10	Osmium–Tellurium Nanozymes for Pentamodal Combinatorial Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44124-44135.	4.0	20
11	Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chemical Communications, 2021, 57, 9820-9833.	2.2	21
12	Modus Operandi of Simultaneous Covering Synthesis from Precursor Heterogeneity for Shelled Nanorods for Multipotent Cancer Theranostics. Advanced Functional Materials, 2020, 30, 1907203.	7.8	7
13	Enhancing the of Performance of Lithiumâ€Sulfur Batteries through Electrochemical Impregnation of Sulfur in Hierarchical Mesoporous Carbon Nanoparticles. ChemElectroChem, 2020, 7, 3653-3655.	1.7	10
14	Intrinsic Peroxidase-Mimicking Ir Nanoplates for Nanozymatic Anticancer and Antibacterial Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41062-41070.	4.0	41
15	Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. Science Advances, 2020, 6, eaaz8201.	4.7	16
16	Graphene oxide-based molecular diagnostic biosensor for simultaneous detection of Zika and dengue viruses. 2D Materials, 2020, 7, 044001.	2.0	18
17	Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment. Bioconjugate Chemistry, 2020, 31, 1784-1794.	1.8	9
18	Nonrecurring Circuit Nanozymatic Enhancement of Hypoxic Pancreatic Cancer Phototherapy Using Speckled Ru–Te Hollow Nanorods. ACS Nano, 2020, 14, 4383-4394.	7.3	48

#	Article	IF	Citations
19	A fluorescent nanobiosensor for the facile analysis of m ⁶ A RNA demethylase activity. Chemical Communications, 2020, 56, 4716-4719.	2.2	12
20	RNAi nanotherapy for fibrosis: highly durable knockdown of CTGF/CCN-2 using siRNA-DegradaBALL (LEM-S401) to treat skin fibrotic diseases. Nanoscale, 2020, 12, 6385-6393.	2.8	19
21	Environmentally Friendly Synthesis of Au–Te-Clustered Nanoworms via Galvanic Replacement for Wavelength-Selective Combination Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5511-5519.	4.0	7
22	Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale, 2019, 11, 15173-15183.	2.8	36
23	Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor. Viruses, 2019, 11, 890.	1.5	17
24	Direct Monitoring of Cancer-Associated mRNAs in Living Cells to Evaluate the Therapeutic RNAi Efficiency Using Fluorescent Nanosensor. ACS Sensors, 2019, 4, 1174-1179.	4.0	6
25	A FRET assay for the quantitation of inhibitors of exonuclease EcoRV by using parchment paper inkjet-printed with graphene oxide and FAM-labelled DNA. Mikrochimica Acta, 2019, 186, 211.	2.5	12
26	Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir–Ag–IrO ₂ Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS Nano, 2019, 13, 3434-3447.	7.3	34
27	Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. Journal of Liposome Research, 2019, 29, 44-52.	1.5	28
28	Development of Dualâ€Pore Coexisting Branched Silica Nanoparticles for Efficient Gene–Chemo Cancer Therapy. Small, 2018, 14, 1702564.	5.2	20
29	Revisiting of Pd Nanoparticles in Cancer Treatment: All-Round Excellence of Porous Pd Nanoplates in Gene-Thermo Combinational Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13819-13828.	4.0	53
30	Barrier to autointegration factor 1, procollagenâ€lysine, 2â€oxoglutarate 5â€dioxygenase 3, and splicing factor 3b subunit 4 as earlyâ€stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology, 2018, 67, 1360-1377.	3.6	90
31	Synthesis of Fluorescent Au Nanocrystals–Silica Hybrid Nanocomposite (FLASH) with Enhanced Optical Features for Bioimaging and Photodynamic Activity. Langmuir, 2018, 34, 173-178.	1.6	9
32	Synthesis of porous Pd nanoparticles by therapeutic chaga extract for highly efficient tri-modal cancer treatment. Nanoscale, 2018, 10, 19810-19817.	2.8	38
33	Design rules for a tunable merged-tip microneedle. Microsystems and Nanoengineering, 2018, 4, 29.	3.4	29
34	Synthesis of biologically-active reduced graphene oxide by using fucoidan as a multifunctional agent for combination cancer therapy. Nanotechnology, 2018, 29, 475604.	1.3	16
35	Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model. Acta Biomaterialia, 2018, 76, 154-163.	4.1	26
36	High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Scientific Reports, 2018, 8, 11413.	1.6	17

#	Article	IF	Citations
37	Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. Advanced Therapeutics, $2018,1,1800065.$	1.6	52
38	Morphology-Controlled Synthesis of Rhodium Nanoparticles for Cancer Phototherapy. ACS Nano, 2018, 12, 6997-7008.	7.3	48
39	The interfacing structural effect of Ag/graphene oxide nanohybrid films on surface enhanced Raman scattering. Nanoscale, 2017, 9, 5872-5878.	2.8	21
40	Functional manganese dioxide nanosheet for targeted photodynamic therapy and bioimaging <i>in vitro</i> and <i>in vivo</i> . 2D Materials, 2017, 4, 025069.	2.0	29
41	Highly efficient photocatalytic performances of SnO2-deposited ZnS nanorods based on interfacial charge transfer. Applied Catalysis B: Environmental, 2017, 205, 433-442.	10.8	48
42	Synthesis of partially dextran-coated gold nanoworms and anisotropic structure based dual-strategic cargo conjugation for efficient combinational cancer therapy. Chemical Communications, 2017, 53, 1385-1388.	2.2	16
43	Highly Efficient and Rapid Neural Differentiation of Mouse Embryonic Stem Cells Based on Retinoic Acid Encapsulated Porous Nanoparticle. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34634-34640.	4.0	19
44	Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. Journal of Materials Chemistry C, 2017, 5, 10016-10022.	2.7	12
45	Reducing Agent-Assisted Excessive Galvanic Replacement Mediated Seed-Mediated Synthesis of Porous Gold Nanoplates and Highly Efficient Gene-Thermo Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35268-35278.	4.0	31
46	Quantum-dot nanoprobes and AOTF based cross talk eliminated six color imaging of biomolecules in cellular system. Analytica Chimica Acta, 2017, 985, 166-174.	2.6	2
47	Emerging Approaches for Graphene Oxide Biosensor. Analytical Chemistry, 2017, 89, 232-248.	3.2	117
48	Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Research, 2017, 10, 503-519.	5.8	68
49	A robust and quantitative assay platform for multiplexed, high throughput screening of protein kinase inhibitors. Chemical Communications, 2016, 52, 12112-12115.	2.2	11
50	Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. British Journal of Pharmacology, 2016, 173, 191-211.	2.7	35
51	MAP4-regulated dynein-dependent trafficking of BTN3A1 controls the TBK1–IRF3 signaling axis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14390-14395.	3.3	30
52	MicroRNAâ€Responsive Drug Release System for Selective Fluorescence Imaging and Photodynamic Therapy In Vivo. Advanced Healthcare Materials, 2016, 5, 2386-2395.	3.9	30
53	Biosensors based on graphene oxide and its biomedical application. Advanced Drug Delivery Reviews, 2016, 105, 275-287.	6.6	301
54	In-depth study on the gene silencing capability of silica nanoparticles with different pore sizes: degree and duration of RNA interference. RSC Advances, 2016, 6, 27143-27150.	1.7	19

#	Article	IF	Citations
55	In-depth investigation of the interaction between DNA and nano-sized graphene oxide. Carbon, 2016, 97, 92-98.	5.4	56
56	Cancer Treatment: Dualâ€Wavelength Irradiation and Dox Delivery for ÂCancer Cell Ablation with Photocatalytic Pr Doped TiO ₂ /NGO ÂHybrid Nanocomposite (Adv. Healthcare Mater. 12/2015). Advanced Healthcare Materials, 2015, 4, 1736-1736.	3.9	2
57	The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Smallâ€Molecule Analysis. Chemistry - A European Journal, 2015, 21, 7217-7223.	1.7	42
58	Dualâ€Wavelength Irradiation and Dox Delivery for ÂCancer Cell Ablation with Photocatalytic Pr Doped TiO ₂ /NGO ÂHybrid Nanocomposite. Advanced Healthcare Materials, 2015, 4, 1833-1840.	3.9	15
59	BSA as additive: A simple strategy for practical applications of PNA in bioanalysis. Biosensors and Bioelectronics, 2015, 69, 167-173.	5.3	22
60	Highly precise plasmonic and colorimetric sensor based on enzymatic etching of nanospheres for the detection of blood and urinary glucose. RSC Advances, 2015, 5, 14330-14332.	1.7	22
61	Spherically-Clustered Porous Au–Ag Alloy Nanoparticle Prepared by Partial Inhibition of Galvanic Replacement and Its Application for Efficient Multimodal Therapy. ACS Nano, 2015, 9, 2696-2703.	7.3	66
62	One-Pot Synthesis of Multifunctional Au@Graphene Oxide Nanocolloid Core@Shell Nanoparticles for Raman Bioimaging, Photothermal, and Photodynamic Therapy. Small, 2015, 11, 2527-2535.	5.2	114
63	A biosensor for the detection of single base mismatches in microRNA. Chemical Communications, 2015, 51, 14597-14600.	2.2	27
64	Self-assembled Monolayer Mediated Surface Environment Modification of Poly(vinylpyrrolidone)-Coated Hollow Au–Ag Nanoshells for Enhanced Loading of Hydrophobic Drug and Efficient Multimodal Therapy. ACS Applied Materials & Trefaces, 2015, 7, 12789-12796.	4.0	8
65	Photodynamic Therapy: Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo (Adv. Funct. Mater. 37/2014). Advanced Functional Materials, 2014, 24, 5774-5774.	7.8	3
66	Direct cellular delivery of human proteasomes to delay tau aggregation. Nature Communications, 2014, 5, 5633.	5.8	84
67	Facile Synthesis and Intraparticle Self-Catalytic Oxidation of Dextran-Coated Hollow Au–Ag Nanoshell and Its Application for Chemo-Thermotherapy. ACS Nano, 2014, 8, 467-475.	7.3	77
68	Mediating ordered assembly of gold nanorods by controlling droplet evaporation modes for surface enhanced Raman scattering. RSC Advances, 2014, 4, 50091-50096.	1.7	22
69	Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances, 2014, 4, 6950.	1.7	22
70	Graphene oxide for fluorescence-mediated enzymatic activity assays. Journal of Materials Chemistry B, 2014, 2, 2452.	2.9	24
71	Mechanistic Study of Laser Desorption/Ionization of Small Molecules on Graphene Oxide Multilayer Films. Langmuir, 2014, 30, 12675-12683.	1.6	30
72	Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo. Advanced Functional Materials, 2014, 24, 5781-5789.	7.8	191

#	Article	IF	Citations
73	Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide without requiring denaturation. Biosensors and Bioelectronics, 2014, 62, 140-144.	5.3	35
74	Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chemical Communications, 2013, 49, 8241.	2.2	72
75	Discovery of Hepatitisâ€C Virus NS3 Helicase Inhibitors by a Multiplexed, Highâ€Throughput Helicase Activity Assay Based on Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 2340-2344.	7.2	64
76	A New Helicase Assay Based on Graphene Oxide for Anti-Viral Drug Development. Molecules and Cells, 2013, 35, 269-273.	1.0	17
77	Cytoprotective effects of graphene oxide for mammalian cells against internalization of exogenous materials. Nanoscale, 2013, 5, 1669.	2.8	25
78	Biomedical Applications of Graphene and Graphene Oxide. Accounts of Chemical Research, 2013, 46, 2211-2224.	7.6	1,420
79	Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst, The, 2013, 138, 1745.	1.7	111
80	Prospects and Challenges of Graphene in Biomedical Applications. Advanced Materials, 2013, 25, 2258-2268.	11.1	573
81	Quantitative and Multiplexed MicroRNA Sensing in Living Cells Based on Peptide Nucleic Acid and Nano Graphene Oxide (PANGO). ACS Nano, 2013, 7, 5882-5891.	7.3	281
82	UV protection of reduced graphene oxide films by TiO2 nanoparticle incorporation. Nanoscale, 2013, 5, 3638.	2.8	36
83	The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 2013, 34, 3503-3510.	5.7	85
84	Discovery of Hepatitisâ€C Virus NS3 Helicase Inhibitors by a Multiplexed, Highâ€Throughput Helicase Activity Assay Based on Graphene Oxide. Angewandte Chemie, 2013, 125, 2396-2400.	1.6	3
85	A simple fluorometric assay for DNA exonuclease activity based on graphene oxide. Analyst, The, 2012, 137, 2024.	1.7	41
86	Reshaping Nanocrystals for Tunable Plasmonic Substrates. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5038-5043.	4.0	27
87	Fabrication of Alternating Multilayer Films of Graphene Oxide and Carbon Nanotube and Its Application in Mechanistic Study of Laser Desorption/Ionization of Small Molecules. ACS Applied Materials & Smp; Interfaces, 2012, 4, 2088-2095.	4.0	39
88	Preparation of the Hybrid Film of Poly(allylamine hydrochloride)-Functionalized Graphene Oxide and Gold Nanoparticle and Its Application for Laser-Induced Desorption/Ionization of Small Molecules. Langmuir, 2012, 28, 4453-4458.	1.6	47
89	Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2012, 4, 6545-6551.	4.0	93
90	Efficient Functional Delivery of siRNA using Mesoporous Silica Nanoparticles with Ultralarge Pores. Small, 2012, 8, 1752-1761.	5.2	154

#	Article	lF	Citations
91	Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials, 2012, 33, 2754-2761.	5 . 7	66
92	Suppression of Hepatitis C Viral Genome Replication with RNA-Cleaving Deoxyribozyme. , 2012, , 429-452.		2
93	Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 2011, 5, 3568-3576.	7.3	328
94	On-Demand Electrochemical Activation of the Click Reaction on Self-Assembled Monolayers on Gold Presenting Masked Acetylene Groups. Journal of the American Chemical Society, 2011, 133, 16718-16721.	6.6	33
95	A New Assay for Endonuclease/Methyltransferase Activities Based on Graphene Oxide. Analytical Chemistry, 2011, 83, 8906-8912.	3.2	90
96	Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging. ACS Nano, 2011, 5, 4550-4561.	7.3	182
97	Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chemical Communications, 2011, 47, 3195.	2.2	176
98	Quantitation of Surface-bound Proteins on Biochips Using MALDI-TOF MS. Analytical Sciences, 2011, 27, 1127-1131.	0.8	8
99	A Grapheneâ€Based Platform for the Assay of Duplexâ€DNA Unwinding by Helicase. Angewandte Chemie - International Edition, 2010, 49, 5703-5707.	7.2	218
100	Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates. Carbon, 2010, 48, 4283-4288.	5.4	71
101	Facile synthesis of robust and biocompatible gold nanoparticles. Chemical Communications, 2010, 46, 583-585.	2.2	43
102	Behaviors of NIH-3T3 Fibroblasts on Graphene/Carbon Nanotubes: Proliferation, Focal Adhesion, and Gene Transfection Studies. ACS Nano, 2010, 4, 6587-6598.	7.3	395
103	Suppression of Hepatitis C Virus Genome Replication in Cells with RNA-Cleaving DNA Enzymes and Short-Hairpin RNA. Oligonucleotides, 2010, 20, 285-296.	2.7	14
104	Laser Desorption/Ionization Mass Spectrometric Assay for Phospholipase Activity Based on Graphene Oxide/Carbon Nanotube Double-Layer Films. Journal of the American Chemical Society, 2010, 132, 14714-14717.	6.6	122
105	Influence of Surface Functionalization on the Growth of Gold Nanostructures on Graphene Thin Films. Langmuir, 2010, 26, 13065-13070.	1.6	72
106	The direct growth of gold rods on graphene thin films. Chemical Communications, 2010, 46, 3185.	2.2	105
107	Mass Spectrometry Assisted Lithography for the Patterning of Cell Adhesion Ligands on Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2009, 48, 3507-3511.	7.2	31
108	Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Electrode. Langmuir, 2009, 25, 11302-11306.	1.6	195

#	Article	IF	Citations
109	Functional Delivery of siRNA in Mice Using Dendriworms. ACS Nano, 2009, 3, 2495-2504.	7.3	141
110	Proteaseâ€Triggered Unveiling of Bioactive Nanoparticles. Small, 2008, 4, 1307-1312.	5.2	112
111	<i>In Vivo</i> Tumor Cell Targeting with "Click―Nanoparticles. Bioconjugate Chemistry, 2008, 19, 1570-1578.	1.8	135
112	Targeted Quantum Dot Conjugates for siRNA Delivery. Bioconjugate Chemistry, 2007, 18, 1391-1396.	1.8	365
113	Nanoparticle Self-Assembly Gated by Logical Proteolytic Triggers. Journal of the American Chemical Society, 2007, 129, 6064-6065.	6.6	123
114	Label-Free Detection of Protein-Protein Interactions on Biochips. Angewandte Chemie - International Edition, 2005, 44, 5480-5483.	7.2	71
115	Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nature Biotechnology, 2004, 22, 717-723.	9.4	140
116	Profiling Kinase Activities by Using a Peptide Chip and Mass Spectrometry. Angewandte Chemie - International Edition, 2004, 43, 5973-5977.	7.2	137
117	Peptide arrays: towards routine implementation. Current Opinion in Chemical Biology, 2004, 8, 554-558.	2.8	104
118	A Method for Connecting Solution-Phase Enzyme Activity Assays with Immobilized Format Analysis by Mass Spectrometry. Analytical Chemistry, 2004, 76, 3923-3929.	3.2	59
119	Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5048-5052.	3.3	330
120	Immobile Artificial Metalloproteinase Containing Both Catalytic and Binding Groups. Journal of the American Chemical Society, 1998, 120, 12008-12016.	6.6	65