Maria Jose Feito Castellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1736159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STRATEGIES TO INVOLVE THE STUDENTS IN THEIR LEARNING IN A BIOCHEMISTRY LABORATORY. , 2021, , .		Ο
2	Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. International Journal of Molecular Sciences, 2021, 22, 3847.	4.1	17
3	Effects of Ipriflavone-Loaded Mesoporous Nanospheres on the Differentiation of Endothelial Progenitor Cells and Their Modulation by Macrophages. Nanomaterials, 2021, 11, 1102.	4.1	12
4	Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices. Journal of Fungi (Basel, Switzerland), 2021, 7, 392.	3.5	3
5	Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candidaalbicans interface. International Immunopharmacology, 2021, 94, 107457.	3.8	7
6	Benefits in the Macrophage Response Due to Graphene Oxide Reduction by Thermal Treatment. International Journal of Molecular Sciences, 2021, 22, 6701.	4.1	14
7	Effective Actions of Ion Release from Mesoporous Bioactive Glass and Macrophage Mediators on the Differentiation of Osteoprogenitor and Endothelial Progenitor Cells. Pharmaceutics, 2021, 13, 1152.	4.5	14
8	Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomaterialia, 2020, 101, 544-553.	8.3	66
9	Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110709.	5.0	30
10	An Immunological Approach to the Biocompatibility of Mesoporous SiO2-CaO Nanospheres. International Journal of Molecular Sciences, 2020, 21, 8291.	4.1	17
11	Ipriflavone-Loaded Mesoporous Nanospheres with Potential Applications for Periodontal Treatment. Nanomaterials, 2020, 10, 2573.	4.1	24
12	Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids and Surfaces B: Biointerfaces, 2019, 176, 96-105.	5.0	49
13	Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomaterialia, 2019, 83, 456-466.	8.3	62
14	Differential effects of graphene oxide nanosheets on Candida albicans phagocytosis by murine peritoneal macrophages. Journal of Colloid and Interface Science, 2018, 512, 665-673.	9.4	21
15	Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomaterials Science, 2018, 6, 2987-2997.	5.4	41
16	Incorporation and effects of mesoporous SiO2-CaO nanospheres loaded with ipriflavone on osteoblast/osteoclast cocultures. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 258-268.	4.3	23
17	Synthesis, Characterization and Biocompatibility of Mesolamellar Calcium Phosphate Hybrids Prepared by Anionic Surfactant Templating. ChemistrySelect, 2018, 3, 6880-6891.	1.5	3
18	Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids and Surfaces B: Biointerfaces, 2018, 171, 250-259.	5.0	23

#	Article	IF	CITATIONS
19	Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages. Journal of Colloid and Interface Science, 2018, 528, 309-320.	9.4	38
20	High glucose alters the secretome of mechanically stimulated osteocyteâ€like cells affecting osteoclast precursor recruitment and differentiation. Journal of Cellular Physiology, 2017, 232, 3611-3621.	4.1	15
21	Effects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites. RSC Advances, 2016, 6, 92586-92595.	3.6	12
22	Influence of the covalent immobilization of graphene oxide in poly(vinyl alcohol) on human osteoblast response. Colloids and Surfaces B: Biointerfaces, 2016, 138, 50-59.	5.0	20
23	Effects of nanocrystalline hydroxyapatites on macrophage polarization. Journal of Materials Chemistry B, 2016, 4, 1951-1959.	5.8	38
24	Effects of bleaching on osteoclast activity and their modulation by osteostatin and fibroblast growth factor 2. Journal of Colloid and Interface Science, 2016, 461, 285-291.	9.4	5
25	Neural Regeneration: Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord (Adv. Healthcare Mater. 12/2015). Advanced Healthcare Materials, 2015, 4, 1892-1892.	7.6	0
26	Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord. Advanced Healthcare Materials, 2015, 4, 1861-1868.	7.6	51
27	Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 304-313.	5.0	21
28	Design of tunable protein-releasing nanoapatite/hydrogel scaffolds for hard tissue engineering. Materials Chemistry and Physics, 2014, 144, 409-417.	4.0	18
29	Triggering cell death by nanographene oxide mediated hyperthermia. Nanotechnology, 2014, 25, 035101.	2.6	19
30	Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites. Journal of Colloid and Interface Science, 2014, 416, 59-66.	9.4	9
31	In vitro evaluation of graphene oxide nanosheets on immune function. Journal of Colloid and Interface Science, 2014, 432, 221-228.	9.4	61
32	Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages. ACS Applied Materials & Interfaces, 2014, 6, 13697-13706.	8.0	147
33	Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. Journal of Materials Chemistry B, 2014, 2, 2910.	5.8	34
34	The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials, 2013, 34, 1562-1569.	11.4	130
35	Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells. Acta Biomaterialia, 2012, 8, 2770-2777.	8.3	40
36	Cell uptake survey of pegylated nanographene oxide. Nanotechnology, 2012, 23, 465103.	2.6	52

#	Article	IF	CITATIONS
37	Signaling Pathways of Immobilized FGFâ€2 on Siliconâ€5ubstituted Hydroxyapatite. Macromolecular Bioscience, 2012, 12, 446-453.	4.1	19
38	<i>In vitro</i> evaluation of glass–glass ceramic thermoseedâ€induced hyperthermia on human osteosarcoma cell line. Journal of Biomedical Materials Research - Part A, 2012, 100A, 64-71.	4.0	19
39	Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. Journal of Materials Chemistry, 2011, 21, 4598.	6.7	42
40	Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 405-416.	3.6	32
41	Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomaterialia, 2011, 7, 2977-2985.	8.3	62
42	Strategy for fluorescent labeling of human acidic fibroblast growth factor without impairment of mitogenic activity: A bona fide tracer. Analytical Biochemistry, 2011, 411, 1-9.	2.4	5
43	N-terminal negatively charged residues in CD3É› chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: Analysis of human CD3É› chains. Immunology Letters, 2009, 126, 8-15.	2.5	3
44	Insights into the oligomerization state–helicase activity relationship of West Nile virus NS3 NTPase/helicase. Virus Research, 2008, 135, 166-174.	2.2	9
45	Loss of N-terminal Charged Residues of Mouse CD3É› Chains Generates Isoforms Modulating Antigen T Cell Receptor-mediated Signals and T Cell Receptor-CD3 Interactions. Journal of Biological Chemistry, 2007, 282, 22324-22334.	3.4	8
46	Membrane cofactor protein (MCP, CD46) binding to clinical isolates of Streptococcus pyogenes: Binding to M type 18 strains is independent of Emm or Enn proteins. Molecular Immunology, 2007, 44, 3571-3579.	2.2	12
47	CD46 (Membrane Cofactor Protein) Acts as a Human Epithelial Cell Receptor for Internalization of Opsonized UropathogenicEscherichia coli. Journal of Immunology, 2006, 177, 2543-2551.	0.8	54
48	CD46-mediated costimulation induces a Th1-biased response and enhances early TCR/CD3 signaling in human CD4+ T lymphocytes. European Journal of Immunology, 2004, 34, 2439-2448.	2.9	40
49	Mechanisms of H4/ICOS costimulation: effects on proximal TCR signals and MAP kinase pathways. European Journal of Immunology, 2003, 33, 204-214.	2.9	39
50	The TCR/CD3 complex: molecular interactions in a changing structure. Archivum Immunologiae Et Therapiae Experimentalis, 2002, 50, 263-72.	2.3	4
51	Variability of invariant mouse CD3ε chains detected by anti-CD3 antibodies. European Journal of Immunology, 2000, 30, 1469-1479.	2.9	10
52	Effects of the human CD38 glycoprotein on the early stages of the HIVâ€1 replication cycle. FASEB Journal, 1999, 13, 2265-2276.	0.5	16
53	CD44 signaling through p56lck involves lateral association with CD4 in human CD4+ T cells. International Immunology, 1999, 11, 1085-1092.	4.0	24
54	The Cell Death-Inducing Ability of Glycoprotein 120 from Different HIV Strains Correlates with Their Ability to Induce CD4 Lateral Association with CD95 on CD4+ T Cells. AIDS Research and Human Retroviruses, 1999, 15, 1255-1263.	1.1	14

#	Article	IF	CITATIONS
55	gp 120s derived from four syncytium-inducing HIV-1 strains induce different patterns of CD4 association with lymphocyte surface molecules. International Immunology, 1997, 9, 1141-1147.	4.0	18
56	CD4 Dependence of Activation Threshold and TCR Signalling in Mouse T Lymphocytes. Scandinavian Journal of Immunology, 1997, 45, 166-174.	2.7	15
57	CD4-dependent and -independent association of protein tyrosine kinases to the T cell receptor/CD3 complex of CD4+ mouse T lymphocytes. European Journal of Immunology, 1996, 26, 1228-1234.	2.9	9
58	A Hyperreactive Variant of a CD4+ T Cell Line Is Activated by Syngeneic Antigen Presenting Cells in the Absence of Antigen. Cellular Immunology, 1995, 164, 265-278.	3.0	22
59	Genetic and immunochemical evidence for CD4-dependent association of p56lck with the alpha beta T-cell receptor (TCR): regulation of TCR-induced activation EMBO Journal, 1994, 13, 90-99.	7.8	27
60	Polyerga, a biological response modifier enhancing T-lymphocyte-dependent responses. Research in Experimental Medicine, 1994, 194, 261-267.	0.7	10