Jeanne M Shreeve

List of Publications by Citations

Source: https://exaly.com/author-pdf/1735669/jeanne-m-shreeve-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,028 69 401 113 h-index g-index citations papers 8.3 416 19,429 7.45 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
401	Azole-based energetic salts. <i>Chemical Reviews</i> , 2011 , 111, 7377-436	68.1	852
400	Energetic nitrogen-rich salts and ionic liquids. Angewandte Chemie - International Edition, 2006, 45, 3584	1-6004	654
399	Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. <i>Chemical Reviews</i> , 2014 , 114, 10527-74	68.1	378
398	Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1456-61	2.8	332
397	Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6464-71	16.4	296
396	3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4437-45	16.4	289
395	Energetic salts with Estacking and hydrogen-bonding interactions lead the way to future energetic materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1697-704	16.4	263
394	Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11904-5	16.4	254
393	Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10532-5	16.4	236
392	Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,5'-bis(trinitromethyl)-3,3'-azo-1H-1,2,4-triazole. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19982-92	16.4	214
391	Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1529		205
390	New Energetic Salts Based on Nitrogen-Containing Heterocycles. <i>Chemistry of Materials</i> , 2005 , 17, 191-	1986	205
389	Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials. <i>Accounts of Chemical Research</i> , 2016 , 49, 4-16	24.3	184
388	Metal-organic frameworks as high explosives: a new concept for energetic materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2540-2	16.4	168
387	Computational Characterization of Energetic Salts. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10718-10	738	167
386	Synthesis of pentafluorosulfanylpyrazole and pentafluorosulfanyl-1,2,3-triazole and their derivatives as energetic materials by click chemistry. <i>Organic Letters</i> , 2007 , 9, 3841-4	6.2	160
385	Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-Substituted Azoles [] <i>Chemistry of Materials</i> , 2007 , 19, 1731-1739	9.6	159

384	Potassium 4,5-Bis(dinitromethyl)furoxanate: A Green Primary Explosive with a Positive Oxygen Balance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 772-5	16.4	151
383	Stickstoffreiche energetische Salze und ionische Fl\(\text{B}\)sigkeiten. Angewandte Chemie, 2006 , 118, 3664-368	32 ,6	149
382	Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4778-86	16.4	143
381	Ionic liquids as hypergolic fuels. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9554-62	16.4	140
380	High-density energetic mono- or bis(oxy)-5-nitroiminotetrazoles. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7320-3	16.4	132
379	Energetic mono-, di-, and trisubstituted nitroiminotetrazoles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 564-7	16.4	131
378	Energetic nitrogen-rich derivatives of 1,5-diaminotetrazole. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6236-9	16.4	128
377	Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9367-71	16.4	127
376	Nitroimino-tetrazolates and oxy-nitroimino-tetrazolates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15081-90	16.4	127
375	Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7500-3	16.4	126
374	Dicyanoborate-based ionic liquids as hypergolic fluids. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 935-7	16.4	126
373	3,4,5-Trinitropyrazole-based energetic salts. <i>Chemistry - A European Journal</i> , 2010 , 16, 10778-84	4.8	121
372	Energetic salts from N-aminoazoles. <i>Inorganic Chemistry</i> , 2004 , 43, 7972-7	5.1	121
371	Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate: A Highly Energetic 3D Metal-Organic Framework as a Promising Primary Explosive. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5565	5- 1 6.4	117
370	Furazan-functionalized tetrazolate-based salts: a new family of insensitive energetic materials. <i>Chemistry - A European Journal</i> , 2009 , 15, 2625-34	4.8	116
369	Taming of 3,4-Di(nitramino)furazan. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15984-7	16.4	112
368	Energetic salts of azotetrazolate, iminobis(5-tetrazolate) and 5, 5'-bis(tetrazolate). <i>Chemical Communications</i> , 2005 , 2750-2	5.8	109
367	Tris(triazolo)benzene and its derivatives: high-density energetic materials. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9881-5	16.4	108

366	Energetic salts based on monoanions of N,N-bis(1H-tetrazol-5-yl)amine and 5,5'-bis(tetrazole). <i>Chemistry - A European Journal</i> , 2010 , 16, 3753-62	4.8	108
365	Low-Melting Dialkyl- and Bis(polyfluoroalkyl)-Substituted 1,1EMethylenebis(imidazolium) and 1,1EMethylenebis(1,2,4-triazolium) Bis(trifluoromethanesulfonyl)amides: Ionic Liquids Leading to Bis(N-heterocyclic carbene) Complexes of Palladium. <i>Organometallics</i> , 2005 , 24, 3020-3023	3.8	106
364	Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2792-5	16.4	104
363	Balancing Excellent Performance and High Thermal Stability in a Dinitropyrazole Fused 1,2,3,4-Tetrazine. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13684-13687	16.4	103
362	Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels. <i>Chemistry - A European Journal</i> , 2010 , 16, 5736-43	4.8	103
361	Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5524		102
360	2,4,5-trinitroimidazole-based energetic salts. <i>Chemistry - A European Journal</i> , 2007 , 13, 3853-60	4.8	102
359	Fused heterocycle-based energetic materials (2012\(\mathbb{Q}\)019). <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4193-4216	13	100
358	Derivatives of 5-nitro-1,2,3-2H-triazole [high performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 585-593	13	97
357	Time for pairing: cocrystals as advanced energetic materials. <i>CrystEngComm</i> , 2016 , 18, 6124-6133	3.3	96
356	Inorganic or organic azide-containing hypergolic ionic liquids. <i>Inorganic Chemistry</i> , 2010 , 49, 3282-8	5.1	90
355	A Facile and Versatile Synthesis of Energetic Furazan-Functionalized 5-Nitroimino-1,2,4-Triazoles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5877-5881	16.4	88
354	Polynitro-substituted pyrazoles and triazoles as potential energetic materials and oxidizers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3200	13	87
353	Ionic Liquids with Fluorine-Containing Cations. European Journal of Inorganic Chemistry, 2005, 2005, 25	7 <u>3</u> 358	0 87
352	3D Nitrogen-rich metal-organic frameworks: opportunities for safer energetics. <i>Dalton Transactions</i> , 2016 , 45, 2363-8	4.3	85
351	Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2969-72	16.4	85
350	Nitrogen-Rich Heterocycles 2007 , 35-83		85
349	Nitroaminofurazans with Azo and Azoxy Linkages: A Comparative Study of Structural, Electronic, Physicochemical, and Energetic Properties. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 12887-12895	3.8	84

348	Energetic mono and dibasic 5-dinitromethyltetrazolates: synthesis, properties, and particle processing. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3819		82	
347	Conjugated Energetic Salts Based on Fused Rings: Insensitive and Highly Dense Materials. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15001-15007	16.4	82	
346	Energetic salts of substituted 1,2,4-triazolium and tetrazolium 3,5-dinitro-1,2,4-triazolates. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3459		81	
345	Energetic nitrogen-rich Cu(II) and Cd(II) 5,5'-azobis(tetrazolate) complexes. <i>Inorganic Chemistry</i> , 2009 , 48, 9918-23	5.1	78	
344	4-Chloro-3,5-dinitropyrazole: a precursor for promising insensitive energetic compounds. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2863	13	77	
343	Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels. <i>Chemistry - A European Journal</i> , 2014 , 20, 6909-14	4.8	76	
342	4-Amino-3,5-dinitropyrazolate saltsBighly insensitive energetic materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6891		76	
341	1,2,3-Triazolo[4,5,-e]furazano[3,4,-b]pyrazine 6-oxidea fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. <i>Chemistry - A European Journal</i> , 2014 , 20, 542-8	4.8	75	
340	From N-Nitro to N-Nitroamino: Preparation of High-Performance Energetic Materials by Introducing Nitrogen-Containing Ions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14513-7	16.4	75	
339	Energetic salts based on furazan-functionalized tetrazoles: routes to boost energy. <i>Chemistry - A European Journal</i> , 2015 , 21, 8607-12	4.8	73	
338	Mono and Bridged Azolium Picrates as Energetic Salts. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3760-3767	2.3	73	
337	1-substituted 5-aminotetrazoles: syntheses from CNN3 with primary amines. <i>Organic Letters</i> , 2008 , 10, 4665-7	6.2	72	
336	Bis(nitroamino-1,2,4-triazolates): N-bridging strategy toward insensitive energetic materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12889-92	16.4	71	
335	Basic Ionic Liquids: Facile Solvents for Carbon@arbon Bond Formation Reactions and Ready Access to Palladium Nanoparticles. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 5095-5100	3.2	71	
334	Synthesis and properties of 3,4,5-trinitropyrazole-1-ol and its energetic salts. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12659		70	
333	New roles for 1,1-diamino-2,2-dinitroethene (FOX-7): halogenated FOX-7 and azo-bis(diahaloFOX) as energetic materials and oxidizers. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11787-90	16.4	69	
332	N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7500	13	69	
331	CsF-Catalyzed Nucleophilic Trifluoromethylation of trans-Enones with Trimethyl(trifluoromethyl)silane: A Facile Synthesis of trans-Hrifluoromethyl Allylic Alcohols. Organic Letters 1999, 1, 1047-1049	6.2	69	

330	Polynitro-Functionalized Dipyrazolo-1,3,5-triazinanes: Energetic Polycyclization toward High Density and Excellent Molecular Stability. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8834-883	3 <mark>8</mark> 6.4	68
329	Pushing the Limits of Oxygen Balance in 1,3,4-Oxadiazoles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8816-8819	16.4	67
328	Growing catenated nitrogen atom chains. Angewandte Chemie - International Edition, 2013, 52, 8792-4	16.4	66
327	3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12895-7	16.4	64
326	4-Nitramino-3,5-dinitropyrazole-based energetic salts. <i>Chemistry - A European Journal</i> , 2012 , 18, 987-94	4.8	64
325	Nitrogen-rich 5-(1-methylhydrazinyl)tetrazole and its copper and silver complexes. <i>Inorganic Chemistry</i> , 2012 , 51, 5305-12	5.1	64
324	Energetic N-trinitroethyl-substituted mono-, di-, and triaminotetrazoles. <i>Chemistry - A European Journal</i> , 2013 , 19, 11000-6	4.8	64
323	Energetic 1,5-diamino-4H-tetrazolium nitro-substituted azolates. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2999		64
322	Nucleophilic di- and tetrafluorination of dicarbonyl compounds. <i>Journal of Organic Chemistry</i> , 2001 , 66, 6263-7	4.2	64
321	Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4'-Bis(5-nitro-1,2,3-2H-triazole) Derivatives. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6260	<u>-4</u> 6.4	62
320	Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11934-7	16.4	62
319	Syntheses and Promising Properties of Dense Energetic 5,5'-Dinitramino-3,3'-azo-1,2,4-oxadiazole and Its Salts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3200-3	16.4	62
318	Energetic N,N'-ethylene-bridged bis(nitropyrazoles): diversified functionalities and properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 16529-36	4.8	61
317	3-Azido-N-nitro-1H-1,2,4-triazol-5-amine-based energetic salts. <i>Chemistry - A European Journal</i> , 2011 , 17, 14485-92	4.8	61
316	Aminonitro Groups Surrounding a Fused Pyrazolotriazine Ring: A Superior Thermally Stable and Insensitive Energetic Material. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2263-2267	6.1	61
315	Energetic compounds consisting of 1,2,5- and 1,3,4-oxadiazole rings. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23143-23148	13	60
314	Nitrogen-Rich Azoles as High Density Energy Materials: Reviewing the Energetic Footprints of Heterocycles. <i>Advances in Heterocyclic Chemistry</i> , 2017 , 121, 89-131	2.4	59
313	N-oxide 1,2,4,5-tetrazine-based high-performance energetic materials. <i>Chemistry - A European Journal</i> , 2014 , 20, 16943-52	4.8	59

312	Thermally stable 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic materials. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2953-60	4.5	59	
311	A Highly Stable and Insensitive Fused Triazolo-Triazine Explosive (TTX). <i>Chemistry - A European Journal</i> , 2017 , 23, 1743-1747	4.8	59	
310	Nitroamino Triazoles: Nitrogen-Rich Precursors of Stable Energetic Salts. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2560-2568	2.3	59	
309	N-Oxides light up energetic performances: synthesis and characterization of dinitraminobisfuroxans and their salts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8969-8973	13	59	
308	The Many Faces of FOX-7: A Precursor to High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6335-8	16.4	58	
307	N-diazo-bridged nitroazoles: catenated nitrogen-atom chains compatible with nitro functionalities. <i>Chemistry - A European Journal</i> , 2014 , 20, 6707-12	4.8	57	
306	A thermally stable nitrogen-rich energetic material B,4,5-triamino-1-tetrazolyl-1,2,4-triazole (TATT). <i>Journal of Materials Chemistry</i> , 2009 , 19, 5850		57	
305	Nitrogen-Rich Tetrazolo[1,5-]pyridazine: Promising Building Block for Advanced Energetic Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3652-3657	16.4	56	
304	Synthesis, characterization, and energetic properties of 6-amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine-7-N-oxide: a nitrogen-rich material with high density. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1130-2	4.5	54	
303	Energetic Nitrate, Perchlorate, Azide and Azolate Salts of Hexamethylenetetramine. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 2959-2965	2.3	54	
302	Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51	16.4	54	
301	Multipurpose [1,2,4]triazolo[4,3-b][1,2,4,5] tetrazine-based energetic materials. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7875-7884	13	53	
300	Boosting energetic performance by trimerizing furoxan. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9391	-93396	52	
299	Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials. <i>Chemistry - A European Journal</i> , 2013 , 19, 8929-36	4.8	52	
298	1-Amino-1-hydrazino-2,2-dinitroethene and corresponding salts: synthesis, characterization, and thermolysis studies. <i>Chemistry - A European Journal</i> , 2011 , 17, 4613-8	4.8	52	
297	Trifluoromethyl- or pentafluorosulfanyl-substituted poly-1,2,3-triazole compounds as dense stable energetic materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4787		52	
296	Synthesis and Characterization of New Energetic Nitroformate Salts. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 2025-2030	2.3	52	
295	Energetic fused triazoles 🗈 promising CN fused heterocyclic cation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8606-8612	13	51	

294	Fused heterocycle-based energetic salts: alliance of pyrazole and 1,2,3-triazole. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1514-1519	13	51
293	Ionic liquid solubilized boranes as hypergolic fluids. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11022		50
292	New Atom/Group Volume Additivity Method to Compensate for the Impact of Strong Hydrogen Bonding on Densities of Energetic Materials. <i>Journal of Chemical & Description of Chemical & Description Description</i> (2008), 53, 520-60.	- 32 84	50
291	Fully C/N-Polynitro-Functionalized 2,2'-Biimidazole Derivatives as Nitrogen- and Oxygen-Rich Energetic Salts. <i>Chemistry - A European Journal</i> , 2016 , 22, 2108-2113	4.8	50
290	Dicationic imidazolium-based ionic liquids and ionic liquid crystals with variously positioned fluoro substituents. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8232		49
289	Energetic N-Nitramino/N-Oxyl-Functionalized Pyrazoles with Versatile IIStacking: Structure-Property Relationships of High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14409-14411	16.4	48
288	Di(1H-tetrazol-5-yl)methanone oxime and 5,5?-(hydrazonomethylene)bis(1H-tetrazole) and their salts: a family of highly useful new tetrazoles and energetic materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15383	13	48
287	Carbonyl and oxalyl bridged bis(1,5-diaminotetrazole)-based energetic salts. <i>Chemistry - A European Journal</i> , 2009 , 15, 9097-104	4.8	48
286	Taming of the silver FOX. Journal of the American Chemical Society, 2010, 132, 8888-90	16.4	47
285	Energetic ethylene- and propylene-bridged bis(nitroiminotetrazolate) salts. <i>Chemistry - A European Journal</i> , 2009 , 15, 3198-203	4.8	47
284	Enhancing Energetic Properties and Sensitivity by Incorporating Amino and Nitramino Groups into a 1,2,4-Oxadiazole Building Block. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1147-50	16.4	46
283	Nitrogen-rich nitroguanidyl-functionalized tetrazolate energetic salts. <i>Chemical Communications</i> , 2009 , 2697-9	5.8	44
282	Energetic salts of 4-nitramino-3-(5-dinitromethyl-1,2,4-oxadiazolyl)-furazan: powerful alliance towards good thermal stability and high performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16833-	16837	43
281	Azo substituted 1,2,4-oxadiazoles as insensitive energetic materials. <i>RSC Advances</i> , 2014 , 4, 50361-5036	14 .7	42
280	N-functionalized nitroxy/azido fused-ring azoles as high-performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7430-7436	13	42
279	5-(Dinitromethyl)-3-(trinitromethyl)-1,2,4-triazole and its derivatives: a new application of oxidative nitration towards gem-trinitro-based energetic materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 478	5 ¹ 4790) ⁴¹
278	Dense energetic salts of N,N?-dinitrourea (DNU). New Journal of Chemistry, 2008, 32, 317-322	3.6	41
277	Azolium Salts Functionalized with Cyanomethyl, Vinyl, or Propargyl Substituents and Dicyanamide, Dinitramide, Perchlorate and Nitrate Anions. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 4965-	-49 ³ 72	41

(2007-2015)

276	1,2,4-Triazole Links and N-Azo Bridges Yield Energetic Compounds. <i>Chemistry - A European Journal</i> , 2015 , 21, 11401-7	4.8	40
275	Triazine-Based Polyfluorinated Triquaternary Liquid Salts: Synthesis, Characterization, and Application as Solvents in Rhodium(I)-Catalyzed Hydroformylation of 1-Octene. <i>Organometallics</i> , 2004, 23, 783-791	3.8	40
274	Dense iodine-rich compounds with low detonation pressures as biocidal agents. <i>Chemistry - A European Journal</i> , 2013 , 19, 7503-9	1 .8	39
273	Cis-Bis(2,2?-Bipyridine-N,N?) Complexes of Ruthenium(III)/(II) and Osmium(III)/(II). <i>Inorganic Syntheses</i> , 2007 , 291-299		39
272	TBAF-Catalyzed Direct Nucleophilic Trifluoromethylation of Eketo Amides with Trimethyl(trifluoromethyl)silane. <i>Journal of Organic Chemistry</i> , 1999 , 64, 2579-2581	1.2	39
271	Enforced Planar FOX-7-like Molecules: A Strategy for Thermally Stable and Insensitive EConjugated Energetic Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7153-7160	16.4	38
270	Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2015 , 127, 9499-9503	3.6	38
269	Synthesis and Characterization of Pyrazolyl-Functionalized Imidazolium-Based Ionic Liquids and Hemilabile (Carbene)palladium(II) Complex Catalyzed Heck Reaction. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 655-661	3.2	38
268	A C-C bonded 5,6-fused bicyclic energetic molecule: exploring an advanced energetic compound with improved performance. <i>Chemical Communications</i> , 2018 , 54, 10566-10569	5.8	38
267	Perfluoroalkylation of simple inorganic molecules: a one step route to novel perfluoroalkylated compounds. <i>Chemical Communications</i> , 2002 , 1818-9	5 .8	37
266	Potassium 4,4?-Bis(dinitromethyl)-3,3?-azofurazanate: A Highly Energetic 3D Metal D rganic Framework as a Promising Primary Explosive. <i>Angewandte Chemie</i> , 2016 , 128, 5655-5657	3.6	37
265	Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability. <i>Chemistry - A European Journal</i> , 2015 , 21, 13297-301	1 .8	36
264	Insensitive nitrogen-rich materials incorporating the nitroguanidyl functionality. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 212-7	1.5	36
263	Structure and Properties of Substituted Imidazolium, Triazolium, and Tetrazolium Poly(1,2,4-triazolyl)borate Salts. <i>Organometallics</i> , 2007 , 26, 1782-1787	3.8	36
262	Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3560-2	§5 6 3	35
261	Energetic aminated-azole assemblies from intramolecular and intermolecular N-HO and N-HN hydrogen bonds. <i>Chemical Communications</i> , 2016 , 52, 8123-6	5 .8	35
260	Highly dense nitranilates-containing nitrogen-rich cations. <i>Chemistry - A European Journal</i> , 2009 , 15, 917-2	7.3	35
259	Strategies Toward Syntheses of Triazolyl- or Triazolium-Functionalized Unsymmetrical Energetic Salts. <i>Chemistry of Materials</i> , 2007 , 19, 144-152	9.6	35

258	Potassium 4,5-Bis(dinitromethyl)furoxanate: A Green Primary Explosive with a Positive Oxygen Balance. <i>Angewandte Chemie</i> , 2016 , 128, 782-785	3.6	35
257	Connecting energetic nitropyrazole and aminotetrazole moieties with N,N?-ethylene bridges: A promising approach for fine tuning energetic properties. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9220)- 5 228	35
256	Curious cases of 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic cocrystals with high nitrogen content: an alternative to salt formation. <i>Chemical Communications</i> , 2015 , 51, 7337-40	5.8	34
255	Fused rings with N-oxide and -NH: good combination for high density and low sensitivity energetic materials. <i>Chemical Communications</i> , 2019 , 55, 8979-8982	5.8	34
254	Aminoacetonitrile as precursor for nitrogen rich stable and insensitive asymmetric N-methylene-C linked tetrazole-based energetic compounds. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16767-16775	13	34
253	FOX-7 (1,1-diamino-2,2-dinitroethene): trapped by copper and amines. <i>Inorganic Chemistry</i> , 2011 , 50, 390-5	5.1	34
252	A novel synthesis of hexakis(trifluoromethyl)cyclotriphosphazene. Single-crystal X-ray structures of N3P3(CF3)6 and N3P3F6. <i>Inorganic Chemistry</i> , 2000 , 39, 375-7	5.1	34
251	Bis(3-nitro-1-(trinitromethyl)-1-1,2,4-triazol-5-yl)methanone: An Applicable and Very Dense Green Oxidizer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19581-19584	16.4	34
250	Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13341-13346	13	33
249	Pentafluorosulfanyl (SF5) Containing Energetic Salts. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 3221-3226	2.3	33
248	Desensitization of the dinitromethyl group: molecular/crystalline factors that affect the sensitivities of energetic materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22705-22712	13	32
247	Comparative Study of Various Pyrazole-based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 378-384	4.5	31
246	Recent progress in taming FOX-7 (1,1-diamino-2,2-dinitroethene). RSC Advances, 2016, 6, 56271-56277	3.7	31
245	Asymmetric N,N?-ethylene-bridged azole-based compounds: Two way control of the energetic properties of compounds. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9931-9940	13	31
244	CN bonded energetic biheterocyclic compounds with good detonation performance and high thermal stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3879-3885	13	31
243	Liquid dinitromethanide salts. <i>Inorganic Chemistry</i> , 2011 , 50, 679-85	5.1	31
242	Impact of Silyl Enol Ether Stability on Palladium-Catalyzed Arylations. <i>Organometallics</i> , 2010 , 29, 1818-1	8,283	31
241	1,1-Diamino-2,2-dinitroethene (FOX-7) and 1-amino-1-hydrazino-2,2-dinitroethene (HFOX) as amphotEes: bases with strong acids. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8756-8763	13	30

240	Bridged bisnitramide-substituted furazan-based energetic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16961-16967	13	30
239	A furazan-fused pyrazole N-oxide via unusual cyclization. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4314	1- 4 319	29
238	3,4,5-Trinitro-1-(nitromethyl)-1H-pyrazole (TNNMP): a perchlorate free high energy density oxidizer with high thermal stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10437-10441	13	29
237	Energetic derivatives of 4,4?,5,5?-tetranitro-2H,2?H-3,3?-bipyrazole (TNBP): synthesis, characterization and promising properties. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5136-5142	13	29
236	1,1-Diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7. <i>Inorganic Chemistry</i> , 2012 , 51, 1963-8	5.1	29
235	Synthesis and Characterization of 4-(1,2,4-Triazole-5-yl)furazan Derivatives as High-Performance Insensitive Energetic Materials. <i>Chemistry - A European Journal</i> , 2018 , 24, 10488-10497	4.8	29
234	Nitromethane Bridged Bis(1,3,4-oxadiazoles): Trianionic Energetic Salts with Low Sensitivities. <i>Chemistry - A European Journal</i> , 2017 , 23, 17682-17686	4.8	28
233	Energetic salts based on nitroiminotetrazole-containing acetic acid. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6123		28
232	Asymmetric nitrogen-rich energetic materials resulting from the combination of tetrazolyl, dinitromethyl and (1,2,4-oxadiazol-5-yl)nitroamino groups with furoxan. <i>Dalton Transactions</i> , 2018 , 47, 16558-16566	4.3	28
231	Polyamino-Substituted Guanyl-Triazole Dinitramide Salts with Extensive Hydrogen Bonding: Synthesis and Properties as New Energetic Materials. <i>Chemistry of Materials</i> , 2008 , 20, 6176-6182	9.6	27
230	Supramolecular Networks Using Ferrocenyl Ditriazole and Diimidazole Bridges. <i>Organometallics</i> , 2006 , 25, 3364-3369	3.8	27
229	Ammonia Oxide as a Building Block for High-Performance and Insensitive Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5894-5898	16.4	26
228	Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure. <i>Chemistry - A European Journal</i> , 2014 , 20, 6699-706	4.8	26
227	Tris(triazolo)benzene and Its Derivatives: High-Density Energetic Materials. <i>Angewandte Chemie</i> , 2012 , 124, 10019-10023	3.6	26
226	Polynitramino compounds outperform PETN. Chemical Communications, 2010, 46, 142-4	5.8	26
225	High-Density Energetic Mono- or Bis(Oxy)-5-Nitroiminotetrazoles. <i>Angewandte Chemie</i> , 2010 , 122, 7478	3- 3 . 4 81	25
224	High-performing and thermally stable energetic 3,7-diamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazole derivatives. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6100-6105	13	24
223	Nitroxy/azido-functionalized triazoles as potential energetic plasticizers. <i>Chemistry - A European Journal</i> , 2015 , 21, 7285-91	4.8	24

222	Energetic dinitromethyl group functionalized azofurazan and its azofurazanates. <i>RSC Advances</i> , 2016 , 6, 91477-91482	3.7	24
221	Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 10857-65	2.8	24
220	Diketo compounds with (trifluoromethyl)trimethylsilane: double nucleophilic trifluoromethylation reactions. <i>Journal of Organic Chemistry</i> , 2001 , 66, 1436-40	4.2	24
219	Multipurpose Energetic Materials by Shuffling Nitro Groups on a 3,3'-Bipyrazole Moiety. <i>Chemistry - A European Journal</i> , 2018 , 24, 17220-17224	4.8	24
218	Energetic furazan-triazole hybrid with dinitromethyl and nitramino groups: decreasing sensitivity via the formation of a planar anion. <i>Dalton Transactions</i> , 2019 , 48, 7677-7684	4.3	23
217	Energetic Derivatives of 8-Nitropyrazolo[1,5-][1,3,5]triazine-2,4,7-triamine: Achieving Balanced Explosives by Fusing Pyrazole with Triazine. <i>Organic Letters</i> , 2020 , 22, 1321-1325	6.2	23
216	Ring closure of polynitroazoles via an N,N?-alkylene bridge: towards high thermally stable energetic compounds. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8382-8387	13	23
215	Small Cation-Based High-Performance Energetic Nitraminofurazanates. <i>Chemistry - A European Journal</i> , 2016 , 22, 11846-53	4.8	23
214	[(Trimethylsilyl)Methyl]Lithium. <i>Inorganic Syntheses</i> , 2007 , 95-97		23
213	One-Pot synthesis of N-protected amino trifluoromethyl ketones as hydrated hydrochloride salts via the CsF-catalyzed reactions of (Trifluoromethyl)trimethylsilane with N-protected amino esters. Journal of Organic Chemistry, 2000, 65, 3241-3	4.2	23
212	Nitramino- and Dinitromethyl-Substituted 1,2,4-Triazole Derivatives as High-Performance Energetic Materials. <i>Chemistry - A European Journal</i> , 2017 , 23, 9185-9191	4.8	22
211	Challenging the Limits of Nitro Groups Associated with a Tetrazole Ring. <i>Organic Letters</i> , 2019 , 21, 468	4 -4 . <u>6</u> 88	22
21 0	Energized nitro-substituted azoles through ether bridges. Journal of Materials Chemistry A, 2015, 3, 155	57 <u>6</u> 5-15	582
209	Impact insensitive dinitromethanide salts. <i>Chemical Communications</i> , 2013 , 49, 10329-31	5.8	22
208	Energetic polymer salts from 1-vinyl-1,2,4-triazole derivatives. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2414-2421	2.5	22
207	Preparation, Characterization, and Thermal and Surfactant Studies of Polyfluorinated Amphiphilic Carbosilane Dendrimers. <i>Macromolecules</i> , 2003 , 36, 8336-8345	5.5	22
206	1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5497-5504	16.4	22
205	Construction of Polynitro Compounds as High-Performance Oxidizers via a Two-Step Nitration of Various Functional Groups. <i>Organic Letters</i> , 2019 , 21, 1073-1077	6.2	21

204	Design and synthesis of N-methylene-C linked tetrazole and nitramino-1,2,4-triazole: an approach to promising energetic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13923-13929	13	21	
203	Functionalized Tetrazoles from Cyanogen Azide with Secondary Amines. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 3573-3578	3.2	21	
202	Syntheses and Promising Properties of Dense Energetic 5,5?-Dinitramino-3,3?-azo-1,2,4-oxadiazole and Its Salts. <i>Angewandte Chemie</i> , 2016 , 128, 3252-3255	3.6	21	
201	Sodium and Potassium 3,5-Dinitro-4-hydropyrazolate: Three-Dimensional Metal@rganic Frameworks as Promising Super-heat-resistant Explosives. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7628-	-763 <u>1</u> 4	20	
200	Bis(nitroamino-1,2,4-triazolates): N-Bridging Strategy Toward Insensitive Energetic Materials. <i>Angewandte Chemie</i> , 2014 , 126, 13103-13106	3.6	20	
199	Ferrocene-containing Liquid Crystalline Polymers. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2007 , 17, 19-36	3.2	20	
198	N-Acetonitrile Functionalized Nitropyrazoles: Precursors to Insensitive Asymmetric N-Methylene-C Linked Azoles. <i>Chemistry - A European Journal</i> , 2017 , 23, 7876-7881	4.8	19	
197	Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability. <i>Engineering</i> , 2020 , 6, 1006-1012	9.7	19	
196	From N-Nitro to N-Nitroamino: Preparation of High-Performance Energetic Materials by Introducing Nitrogen-Containing Ions. <i>Angewandte Chemie</i> , 2015 , 127, 14721-14725	3.6	19	
195	The first application of SelectfluorTM in electrophilic fluorination of amines: a new route to NF2, NHF, and >NF compounds. <i>Chemical Communications</i> , 2001 , 1196-1197	5.8	19	
194	Green Synthetic Approach for High-Performance Energetic Nitramino Azoles. <i>Organic Letters</i> , 2019 , 21, 2610-2614	6.2	18	
193	Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4?-Bis(5-nitro-1,2,3-2H-triazole) Derivatives. <i>Angewandte Chemie</i> , 2015 , 127, 6358-6362	3.6	18	
192	Dinitromethyl groups enliven energetic salts. <i>Energetic Materials Frontiers</i> , 2020 , 1, 2-15	3.3	18	
191	Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2016 , 128, 11720-11723	3.6	18	
190	Syntheses and experimental studies on the relative stabilities of spiro, ansa, and bridged derivatives of cyclic tetrameric fluorophosphazene. <i>Inorganic Chemistry</i> , 2001 , 40, 2120-6	5.1	18	
189	Tunable Dimroth rearrangement of versatile 1,2,3-triazoles towards high-performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 12291-12298	13	18	
188	Dinitromethyl-3(5)-1,2,4-oxadiazole Derivatives from Controllable Cyclization Strategies. <i>Chemistry - A European Journal</i> , 2017 , 23, 16401-16407	4.8	17	
187	3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies. <i>Angewandte Chemie</i> , 2016 , 128, 13087-13089	3.6	17	

Energetic 1,2,5-Oxadiazolo-Pyridazine and its N-Oxide. Chemistry - A European Journal, 2017, 23, 15022-15025 17 186 Synthesis of Trinitromethyl- and Dinitromethyl-Substituted Azoles Using Nitrate Salts in Sulfuric 185 2.9 17 Acid. Synthesis, 2012, 44, 1253-1257 Concentration-dependent reactions of deoxofluor with arylglyoxal hydrates: a new route to 184 6.2 17 polyfluoro ethers. Organic Letters, 2001, 3, 2713-5 Hexakis(trifluoromethyl)tetrazane. Angewandte Chemie International Edition in English, 1995, 34, 586-588 183 17 Electrophilic iodination: a gateway to high iodine compounds and energetic materials. Dalton 182 4.3 17 Transactions, 2016, 45, 13827-33 A Facile and Versatile Synthesis of Energetic Furazan-Functionalized 5-Nitroimino-1,2,4-Triazoles. 181 3.6 16 Angewandte Chemie, **2017**, 129, 5971-5975 Energetic Functionalized Azido/Nitro Imidazole Fused 1,2,3,4-Tetrazine. European Journal of 180 16 3.2 Organic Chemistry, 2018, 2018, 2273-2276 Enhancing Energetic Properties and Sensitivity by Incorporating Amino and Nitramino Groups into a 3.6 16 179 1,2,4-Oxadiazole Building Block. Angewandte Chemie, 2016, 128, 1159-1162 Impact Insensitive Dianionic Dinitrourea Salts: The CN4O52[Anion Paired with Nitrogen-Rich 178 16 4.1 Cations. Energy & Damp; Fuels, 2009, 23, 4567-4574 Fluorine-Containing Ionic Liquids from N-Alkylpyrrolidine and N-Methylpiperidine and Fluorinated Acetylacetones: Low Melting Points and Low Viscosities. European Journal of Inorganic Chemistry, 2.3 16 177 2008, 2008, 3353-3358 A Duo and a Trio of Triazoles as Very Thermostable and Insensitive Energetic Materials. Inorganic 176 5.1 16 Chemistry, 2020, 59, 17766-17774 1,2,3-Triazole with linear and branched catenated nitrogen chains I The role of regiochemistry in 16 175 14.7 energetic materials. Chemical Engineering Journal, 2021, 410, 128148 Tetrazolyl and dinitromethyl groups with 1,2,3-triazole lead to polyazole energetic materials. 174 4.3 15 Dalton Transactions, 2019, 48, 3237-3242 Energetic 4,4'-Oxybis[3,3'-(1-hydroxytetrazolyl)]furazan and Its Salts. Chemistry - an Asian Journal, 173 4.5 15 2016, 11, 3113-3117 Taming of tetranitroethane: a promising precursor for high performance energetic ingredients. 172 13 15 Journal of Materials Chemistry A, **2018**, 6, 15815-15820 Energetic and Fluorescent Azole-Fused 4-Amino-1,2,3-triazine-3-N-oxides. ACS Applied Energy 6.1 171 15 Materials, 2019, 2, 8871-8877 Polynitro-Functionalized Dipyrazolo-1,3,5-triazinanes: Energetic Polycyclization toward High 170 3.6 15 Density and Excellent Molecular Stability. Angewandte Chemie, 2017, 129, 8960-8964 Energetic polyazole polynitrobenzenes and their coordination complexes. Chemical 169 5.8 15 Communications, 2009, 6014-6

168	Chloryl Fluoride. <i>Inorganic Syntheses</i> , 2007 , 3-6		15
167	Main chain 1,1?-ferrocene-containing polyelectrolytes exhibiting thermotropic liquid-crystalline and fluorescent properties. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 974-983	2.5	15
166	Synthesis of Poly- and the First Perfluoroalkyl-N(SO2F)2 Derivatives: Improved Methods for the Preparation of XN(SO2F)2 (X = H, Cl) and Single-Crystal Diffraction Studies of HN(SO2Cl)2, HN(SO2F)2, and CF3CH2N(SO2F)2[]Inorganic Chemistry, 1998 , 37, 6295-6303	5.1	15
165	New Generation Agent Defeat Weapons: Energetic N,N'-Ethylene-Bridged Polyiodoazoles. <i>Chemistry - A European Journal</i> , 2017 , 23, 16753-16757	4.8	14
164	5-(4-Azidofurazan-3-yl)-1-hydroxytetrazole and its derivatives: from green primary to secondary explosives. <i>New Journal of Chemistry</i> , 2019 , 43, 12684-12689	3.6	14
163	Metall-organische Ger\(\text{Stverbindungen als Explosivstoffe: ein neues Konzept f\(\text{Elenergetische}\) Materialien. <i>Angewandte Chemie</i> , 2014 , 126, 2574-2576	3.6	14
162	Versatile polyiodopyrazoles: synthesis and biocidal promise. <i>Chemical Communications</i> , 2015 , 51, 3438-4	15 .8	14
161	Studies on the Reactivity of Tetrafluoro- and Pentafluorophenyl Trimethylsilyl Ether with Pentafluorobenzenes. Chemistry and X-ray Structural Investigations of Polyfluorodiphenyl Ethers Inorganic Chemistry, 1997, 36, 366-381	5.1	14
160	Bis(Trifluoromethyl)Mercury. <i>Inorganic Syntheses</i> , 2007 , 52-54		14
159	Iodine-Rich Imidazolium Iodate and Periodate Salts: En Route to Single-Based Biocidal Agents. <i>Inorganic Chemistry</i> , 2016 , 55, 12844-12850	5.1	14
158	Mono- and diiodo-1,2,3-triazoles and their mono nitro derivatives. <i>Dalton Transactions</i> , 2016 , 45, 9684-8	4.3	14
157	From FOX-7 to H-FOX to insensitive energetic materials with hypergolic properties. <i>Chemical Communications</i> , 2016 , 52, 7668-71	5.8	14
156	New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents. <i>Accounts of Chemical Research</i> , 2021 , 54, 332-343	24.3	14
155	Energy and Biocides Storage Compounds: Synthesis and Characterization of Energetic Bridged Bis(triiodoazoles). <i>Inorganic Chemistry</i> , 2017 , 56, 13547-13552	5.1	13
154	N,N'-Methylenebis(N-(1,2,5-oxadiazol-3-yl)nitramide) derivatives as metal-free green primary explosives. <i>Dalton Transactions</i> , 2018 , 47, 12661-12666	4.3	13
153	Tetracarbonyl(12-Methyl Acrylate)Ruthenium. <i>Inorganic Syntheses</i> , 2007 , 176-180		13
152	Designing high-performance hypergolic propellants based on materials genome. <i>Science Advances</i> , 2020 , 6,	14.3	13
151	Challenging the limits of nitrogen and oxygen content of fused rings. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17411-17414	13	13

150	Functionalized Tetrazole Energetics: A Route to Enhanced Performance. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 157-191	1.3	13
149	A Safer Synthesis of 3,5-Bis(dinitromethyl)-1,2,4-triazole (BDT) and Its Mono and Di Salts: High-Performance Insensitive Energetic Materials. <i>Propellants, Explosives, Pyrotechnics</i> , 2018 , 43, 48-53	1.7	13
148	Oxidative Cyclization Protocol for the Preparation of Energetic 3-Amino-5- R-1,2,4-oxadiazoles. <i>Organic Letters</i> , 2018 , 20, 8039-8042	6.2	13
147	Control of Biohazards: A High Performance Energetic Polycyclized Iodine-Containing Biocide. <i>Inorganic Chemistry</i> , 2018 , 57, 8673-8680	5.1	13
146	Resolving synthetic challenges faced in the syntheses of asymmetric N,N?-ethylene-bridged energetic compounds. <i>New Journal of Chemistry</i> , 2017 , 41, 4040-4047	3.6	12
145	Versatile functionalization of 3,5-diamino-4-nitropyrazole for promising insensitive energetic compounds. <i>Dalton Transactions</i> , 2019 , 48, 14490-14496	4.3	12
144	Derivatives of 3,6-Bis(3-aminofurazan-4-ylamino)-1,2,4,5-tetrazine: Excellent Energetic Properties with Lower Sensitivities. <i>ACS Applied Materials & Design Sensitivities</i> (12, 31522-31531)	9.5	12
143	Dicarbonylbis(IB-Cyclopentadienyl) Complexes of Titanium, Zirconium, and Hafnium. <i>Inorganic Syntheses</i> , 2007 , 147-157		12
142	Intermolecular Weak Hydrogen Bonding (Het-H-N/O): an Effective Strategy for the Synthesis of Monosubstituted 1,2,4,5-Tetrazine-Based Energetic Materials with Excellent Sensitivity. <i>Journal of Organic Chemistry</i> , 2019 , 84, 16019-16026	4.2	12
141	Well-balanced energetic cocrystals of H5IO6/HIO3 achieved by a small acid-base gap. <i>Chemical Engineering Journal</i> , 2021 , 405, 126623	14.7	12
140	Finding furoxan rings. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5859-5864	13	11
139	1,3,5-Triiodo-2,4,6-trinitrobenzene (TITNB) from benzene: Balancing performance and high thermal stability of functional energetic materials. <i>Chemical Engineering Journal</i> , 2019 , 378, 122119	14.7	11
138	[14-1,5-Cyclooctadiene)(Pyridine)-(Tricyclohexylphosphine)Iridium(I)Hexafluorophosphate. <i>Inorganic Syntheses</i> , 2007 , 173-176		11
137	Azo- and methylene-bridged mixed azoles for stable and insensitive energetic applications. <i>Dalton Transactions</i> , 2020 , 49, 11498-11503	4.3	11
136	A Safe and Scaled-Up Route to Inert Ammonia Oxide Hydroxylammonium Azide (H7N5O2), Hydrazinium Azide (H5N5), and Ammonium Azide (H4N4). <i>ACS Applied Energy Materials</i> , 2019 , 2, 6919-6	923	10
135	Functional energetic biocides by coupling of energetic and biocidal polyiodo building blocks. <i>Chemical Engineering Journal</i> , 2019 , 368, 244-251	14.7	10
134	Energetic compounds based on a new fused triazolo[4,5-d]pyridazine ring: Nitroimino lights up energetic performance. <i>Chemical Engineering Journal</i> , 2021 , 420, 129839	14.7	10
133	The Many Faces of FOX-7: A Precursor to High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2015 , 127, 6433-6436	3.6	9

132	Selecting Suitable Substituents for Energetic Materials Based on a Fused Triazolo-[1,2,4,5]tetrazine Ring. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5510-5516	6.1	9
131	Hydrogen bond system generated by nitroamino rearrangement: new character for designing next generation energetic materials. <i>Chemical Communications</i> , 2021 , 57, 603-606	5.8	9
130	One Step Closer to an Ideal Insensitive Energetic Molecule: 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its Derivatives. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12665-12674	16.4	9
129	Materials-Genome Approach to Energetic Materials. <i>Accounts of Materials Research</i> , 2021 , 2, 692-696	7.5	9
128	Energetic N-Nitramino/N-Oxyl-Functionalized Pyrazoles with Versatile Latacking: Structure Property Relationships of High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2016 , 128, 14621-14623	3.6	8
127	Trichlorotris(Tetrahydrofuran)-Molybdenum(III). Inorganic Syntheses, 2007, 193-194		8
126	Sodium Carbonyl Ferrates, Na2[Fe(Co)4], Na2[Fe2(Co)8], and Na2[Fe3(Co)11]. Bis[ENitridobis(Triphenylphosphorus)(1+)] Undecacarbonyltriferrate(2-), [(Ph3P)2N]2[Fe3(Co)11]. Inorganic Syntheses, 2007 , 157-161		8
125	Tetraethylammonium ECarbonyl-1©:20-Decacarbonyl-1BC,2BC,3BC-EHydrido-1©ETriangulo-Triruthenate(1D Inorganic Syntheses, 2007 , 168-169		8
124	Introduction to Trifluoromethanesulfonates and Trifluoromethanesulfonato-O Complexes. <i>Inorganic Syntheses</i> , 2007 , 243-250		8
123	Pentaammineosmium(III) and Hexaammineosmium(III) Complexes. <i>Inorganic Syntheses</i> , 2007 , 269-277		8
122	Cesium Fluoroxysulfate (Cesium Fluorine Sulfate). Inorganic Syntheses, 2007, 22-27		8
121	Simple Preparation of Dialkyl Polyfluoroalkyl Phosphonates. Synthetic Communications, 1987, 17, 71-75	1.7	8
120	Superior High-Energy-Density Biocidal Agent Achieved with a 3D Metal-Organic Framework. <i>ACS Applied Materials & Description of the App</i>	9.5	8
119	Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. <i>Nature Communications</i> , 2021 , 12, 2146	17.4	8
118	One-step synthesis to an insensitive explosive: N,N?-bis((1H-tetrazol-5-yl)methyl)nitramide (BTMNA). <i>Chemical Engineering Journal</i> , 2021 , 412, 128697	14.7	8
117	HFOX-1-Amino-1-hydrazino-2,2-Dinitroethylene as a Precursor to Trifluoromethyl, Dinitro, or Trinitro-Based Energetic 1,2,4-Triazoles. <i>Organic Letters</i> , 2021 , 23, 76-80	6.2	8
116	Ammonia Oxide as a Building Block for High-Performance and Insensitive Energetic Materials. <i>Angewandte Chemie</i> , 2017 , 129, 5988-5992	3.6	7
115	CNO: Thermally Stable Nitrogen-Rich Inner Bis(diazonium) Zwitterions. <i>Organic Letters</i> , 2019 , 21, 8201-8	3 8.0 4	7

114	Cyclopentadienylthallium (Thallium Cyclopentadienide). Inorganic Syntheses, 2007, 97-99		7
113	Tetrafluoroammonium Salts. <i>Inorganic Syntheses</i> , 2007 , 39-48		7
112	Pentaammineruthenium(III), Pentaammineruthenium(II), and Binuclear Decaamminediruthenium(III)/(II) Complexes. <i>Inorganic Syntheses</i> , 2007 , 257-263		7
111	Difluoroorganometalate-Assisted Generation of Perfluorocarbanions from Trimethylsilyl Synthons and Their Interactions with Perfluoroaryl Compounds [] Organometallics, 2000, 19, 2664-2670	3.8	7
110	Some highly fluorinated acyclic, cyclic, and polycyclic derivatives of Cl2NCF2CF2NCl2 and Cl2C?NCCl2CCl2N?CCl2. <i>Heteroatom Chemistry</i> , 1990 , 1, 167-173	1.2	7
109	Very thermostable energetic materials based on a fused-triazole: 3,6-diamino-1H-[1,2,4]triazolo[4,3-b][1,2,4]triazole. <i>New Journal of Chemistry</i> , 2021 , 45, 85-91	3.6	7
108	1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. <i>Angewandte Chemie</i> , 2021 , 133, 5557-5564	3.6	7
107	Synthesis of 4-fluororesorcinol and 4-trifluoromethylresorcinol. <i>Heteroatom Chemistry</i> , 1998 , 9, 229-23	91.2	6
106	Ethylboronic Acid and Tetraethyldiboroxane/Triethylboroxin (3:1). Inorganic Syntheses, 2007, 83-87		6
105	Pentafluorooxotellurates(VI). Inorganic Syntheses, 2007, 33-37		6
104	Selenium Tetrafluoride, Selenium Difluoride Oxide (Seleninyl Fluoride), and Xenon Bis[Pentafluorooxoselenate(VI)]. <i>Inorganic Syntheses</i> , 2007 , 27-31		6
103	Acyclic Sulfur Nitrogen Fluorine Compounds. <i>Inorganic Syntheses</i> , 2007 , 12-17		6
102	Tribromosulfur(IV) Hexafluoroarsenate(V). <i>Inorganic Syntheses</i> , 2007 , 76-79		6
101	Syntheses and reactions of the fluorinated cyclic thionylphosphazene NSO(Ar)[NPF(2)]2(Ar = 4-t-BuC(6)H(4)-) with difunctional reagents. <i>Inorganic Chemistry</i> , 2001 , 40, 2287-91	5.1	6
100	Hexakis(trifluormethyl)tetrazan. Angewandte Chemie, 1995, 107, 645-647	3.6	6
99	F-(TRI-tert-BUTOXY)PHOSPHINE AND F-(PENTA-tert-BUTOXY)PHOSPHORANE. <i>Phosphorous and Sulfur and the Related Elements</i> , 1980 , 8, 331-333		6
98	Tri- and Tetracoordinate Fluorosulfur(IV) and Pentacoordinate Fluorosulfur(VI) Compounds. <i>Israel Journal of Chemistry</i> , 1978 , 17, 1-10	3.4	6
97	Improving the density and properties of nitrogen-rich scaffolds by the introduction of a CNO2 group. New Journal of Chemistry, 2018, 42, 16162-16166	3.6	6

(2007-2007)

96	Silver Hexafluoroarsenate and Bis(Cyclo-Octasulfur)Silver(1+) Hexafluoroarsenate(1-). <i>Inorganic Syntheses</i> , 2007 , 72-76		5	
95	Potassium Tetrakis[Dihydrogen Diphosphito(2]]Diplatinate(II). <i>Inorganic Syntheses</i> , 2007 , 211-213		5	
94	(2,2?-Bipyridine-N,N?)(2,2?:6?,2?-Terpyridine-N,N?,N?) Complexes of Ruthenium(III)/(II) and Osmium(III)/(II). <i>Inorganic Syntheses</i> , 2007 , 299-306		5	
93	Tungsten Tetrafluoride Oxide. <i>Inorganic Syntheses</i> , 2007 , 37-38		5	
92	The first crystal and molecular structures of hydrated bis(n-perfluoroalkyl)phosphinic acids [H3O]+[(Rf)2PO2][(Rf = C6F13, C7F15 or C8F17). <i>Dalton Transactions RSC</i> , 2000 , 4089-4092		5	
91	Novel and versatile reactions of trifluoroamine oxide: a new route to polyfluorinated ethers. <i>Inorganic Chemistry</i> , 2000 , 39, 117-20	5.1	5	
90	A Convenient Synthesis of Trifluoromethane Thiol. Synthetic Communications, 1974, 4, 233-235	1.7	5	
89	Assembling Nitrogen-rich, Thermally Stable, and Insensitive Energetic Materials by Polycyclization. <i>Chemical Engineering Journal</i> , 2021 , 431, 133235	14.7	5	
88	Bridged and fused triazolic energetic frameworks with an azo building block towards thermally stable and applicable propellant ingredients. <i>Journal of Materials Chemistry A</i> ,	13	5	
87	Bilateral modification of FOX-7 towards an enhanced energetic compound with promising performances. <i>Chemical Engineering Journal</i> , 2021 , 415, 128990	14.7	5	
86	Electrochemical stability and capacitance of in-situ synthesized Prussian blue on thermally-activated graphite. <i>SN Applied Sciences</i> , 2019 , 1, 1	1.8	4	
85	-Dinitromethyl-Functionalized 5-Amino-1,3,4-oxadiazolate Derivatives: Alternate Route, Characterization, and Property Analysis. <i>Organic Letters</i> , 2020 , 22, 4771-4775	6.2	4	
84	Synthesis of Aminotetrazolyl Esters from Cyanogen Azide with Amino Esters. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 688-692	3.2	4	
83	Titanium(II) Chloride. <i>Inorganic Syntheses</i> , 2007 , 181-182		4	
82	Indium(III) Iodide. <i>Inorganic Syntheses</i> , 2007 , 87-89		4	
81	Dialkyl [(N,N-Diethylcarbamoyl)Methyl]Phosphonates. <i>Inorganic Syntheses</i> , 2007 , 101-106		4	
80	Ethene Complexes of Bis(Trialkylphosphine)Platinum(0). <i>Inorganic Syntheses</i> , 2007 , 213-216		4	
79	Triphenyl(Trichloromethyl)Phosphonium Chloride and (Dichloromethylene)Triphenylphosphorane. <i>Inorganic Syntheses</i> , 2007 , 107-109		4	

78	Methanetetraylbis (Phosphoranes) (Carbodiphosphoranes). Inorganic Syntheses, 2007, 113-117		4
77	Tris[(Trimethylsilyl)Methyl]Indium. <i>Inorganic Syntheses</i> , 2007 , 89-91		4
76	(Fluorocarbonyl)Imidosulfurous Difluoride. <i>Inorganic Syntheses</i> , 2007 , 10-12		4
75	Reactions of Dichloroperfluorocycloalkenes with Triazamacrocyclic Amines. <i>Inorganic Chemistry</i> , 1998 , 37, 5342-5345	5.1	4
74	Synthesis and energetic properties of trifluoromethyl-substituted 2-nitro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives. <i>Journal of Fluorine Chemistry</i> , 2021 , 245, 109743	2.1	4
73	Thermal Modification of Graphite for Fast Electron Transport and Increased Capacitance. <i>ACS Applied Nano Materials</i> , 2019 , 2, 228-240	5.6	4
72	Mono-N-oxidation of heterocycle-fused pyrimidines. <i>Dalton Transactions</i> , 2021 , 50, 2143-2148	4.3	4
71	Multisubstituted Imidazolo[4,5-]pyridazine Fused Ring System Resulting from Nitroamine-Nitroimine Tautomerism. <i>Organic Letters</i> , 2021 , 23, 7860-7864	6.2	4
70	IL-oxidizer/IL-fuel combinations as greener hypergols. <i>New Journal of Chemistry</i> , 2019 , 43, 1127-1129	3.6	3
69	Synthesis and Chemistry of CF3C6F4OC6F4 Group 14/16 Derivatives. <i>Inorganic Chemistry</i> , 1997 , 36, 527	22 ₅ 5 ₁ 23	0 3
68	Bis(Trifluoromethyl)Cadmium.1,2-Dimethoxyethane. <i>Inorganic Syntheses</i> , 2007 , 55-58		3
67	Carbonylchlorogold(I). <i>Inorganic Syntheses</i> , 2007 , 236-238		3
66	Cis-Tetraammine and Cis-Bis (1,2-Ethanediamine) Complexes of Rhodium(III). <i>Inorganic Syntheses</i> , 2007 , 220-233		3
65	Pentaammine(Trifluoromethanesulfonato-O)-Chromium(III) Trifluoromethanesulfonate and Bis(1,2-Ethanediamine)-Bis(Trifluoromethanesulfonato-O) Chromium(III) Trifluoromethanesulfonate. <i>Inorganic Syntheses</i> , 2007 , 250-252		3
64	Sulfur Chloride Pentafluoride. <i>Inorganic Syntheses</i> , 2007 , 8-10		3
(-			
63	Phenylimido Complexes of Tungsten and Rhenium. <i>Inorganic Syntheses</i> , 2007 , 194-200		3
63	Phenylimido Complexes of Tungsten and Rhenium. <i>Inorganic Syntheses</i> , 2007 , 194-200 Chlorine Fluoride. <i>Inorganic Syntheses</i> , 2007 , 1-3		3

60	Tris[(Trimethylsilyl)Methyl]Aluminum. <i>Inorganic Syntheses</i> , 2007 , 92-93		3
59	C6, C7, and C8 perfluoroalkyl-substituted phosphinic acids. <i>Inorganic Chemistry</i> , 2000 , 39, 1787-9	5.1	3
58	Selective Synthesis of Bis(3-(3-(trifluoromethyl)-1-1,2,4-triazol-5-yl)-4,4'-azo- and -azoxyfurazan Derivatives. <i>Journal of Organic Chemistry</i> , 2021 , 86, 7781-7786	4.2	3
57	Energetic Tricyclic Polynitropyrazole and Its Salts: Proton-Locking Effect of Guanidium Cations. <i>Inorganic Chemistry</i> , 2021 , 60, 8339-8345	5.1	3
56	A Halogen-Free Green High Energy Density Oxidizer from H-FOX. European Journal of Organic Chemistry, 2019 , 2019, 3142-3145	3.2	2
55	An Azo-bridged Triazole Derived from Tetrazine. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2020 , 646, 1799-1804	1.3	2
54	N,N?-Dimethyl-N,N?-Bis(Trimethylsilyl)Urea. <i>Inorganic Syntheses</i> , 2007 , 120-121		2
53	Sulfur Dicyanide. <i>Inorganic Syntheses</i> , 2007 , 125-126		2
52	Pentaammineplatinum(IV) Complexes. Inorganic Syntheses, 2007, 277-279		2
51	Pentakis(Methnamine)-(Trifluoromethanesulfonato-O) Complexes of Chromium(III), Cobalt(III), and Rhodium(III). <i>Inorganic Syntheses</i> , 2007 , 279-282		2
50	Platinum Microcrystals. <i>Inorganic Syntheses</i> , 2007 , 238-242		2
49	Tetraisocyanatosilane. <i>Inorganic Syntheses</i> , 2007 , 99-101		2
48	Tricarbonyl (IB-Cyclopentadienyl)Iron(1+)Trifluoromethanesulfonate, [CpFe(CO)3](Cf3So3). <i>Inorganic Syntheses</i> , 2007 , 161-163		2
47	Bromo(ြB-Cyclopentadienyl)-[1,2-Ethanediylbis(Diphenylphosphine)]Iron and Bromo(因-Cyclopentadienyl)-[1,2-Ethanediylbis(Diphenylphosphine)]-Bis(Tetrahydrofuran)Ironmagnes Inorganic Syntheses, 2007 , 170-173	ium(Fe	e-M <u>i</u> g).
46	Synthesis of macrocyclic polyethers with partially fluorinated side arms. <i>Journal of Heterocyclic Chemistry</i> , 2003 , 40, 451-458	1.9	2
45	Synthesis of proton-ionizable acyclic, macrocyclic and macrobicyclic compounds containing one or two triazole groups. <i>Journal of Heterocyclic Chemistry</i> , 2005 , 42, 621-629	1.9	2
44	Disilyl Selenide (Disilaselenane). <i>Inorganic Syntheses</i> ,127-129		2
43	Halogen bonding (C-F IIIX) and its effect on creating ideal insensitive energetic materials. <i>Chemical Engineering Journal</i> , 2022 , 440, 135969	14.7	2

42	Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance ACS Applied Materials & Interfaces, 2021, 13, 61357-61364	,	2
41	Increased electron transfer kinetics and thermally treated graphite stability through improved tunneling paths. <i>Journal of Materials Science</i> , 2020 , 55, 11411-11430	;	1
40	Yellow Molybdenum(VI) Oxide Dihydrate. <i>Inorganic Syntheses</i> , 2007 , 191-192		1
39	Tellurium Chloride Pentafluoride. <i>Inorganic Syntheses</i> , 2007 , 31-33		1
38	Osmium(VI) Fluoride. <i>Inorganic Syntheses</i> , 2007 , 79-81		1
37	Bromobis[(Trimethylsilyl)Methyl]Aluminum. <i>Inorganic Syntheses</i> , 2007 , 94-95		1
36	1,3,5,7-Tetramethyl-1H,5H-[1,4,2,3]Diazadiphospholo-[2,3-B][1,4,2,3]Diazadiphosphole-2,6(3H,7H)-Dione and a Molybdenum Complex. <i>Inorganic Syntheses</i> , 2007 , 122-125		1
35	Cis- and Trans-Bis(1,2-Ethanediamine)-Rhodium(III) Complexes. <i>Inorganic Syntheses</i> , 2007 , 283-287		1
34	Cis- and Trans-Bis(1,2-Ethanediamine)-Iridium(III) Complexes. <i>Inorganic Syntheses</i> , 2007 , 287-291		1
33	Organic Superconducting Solids. <i>Inorganic Syntheses</i> , 2007 , 130-143		1
32	Tris(2,2,6,6-Tetramethyl-3,5-Heptanedionato)Chromium(III). Inorganic Syntheses, 2007, 183-184		1
31	Ammonium Pentafluoromanganate(III) and Potassium Pentafluoromanganate(III) Hydrate. Inorganic Syntheses, 2007, 50-52		1
30	Dicarbonyl(IB-Cyclopentadienyl) (2-Methyl-1-Propenyl-IKC1)Iron and Dicarbonyl(IB-Cyclopentadienyl)(I2-2-Methyl-1-Propene)Iron(1+) Tetrafluoroborate. <i>Inorganic Syntheses</i> , 2007 , 163-167		1
29	Methylmercury(II) Nitrate and Methylmercury (II) Trifluoroacetate. <i>Inorganic Syntheses</i> , 2007 , 143-146		1
28	Lithium Insertion Compounds. <i>Inorganic Syntheses</i> , 2007 , 200-206		1
27	Chlorine Fluorosulfate. <i>Inorganic Syntheses</i> , 2007 , 6-8		1
26	Organic Intercalated Ionic Ferromagnets of Chromium(II): Bis(Alkylammonium) Tetrachlorochromate(II) Compounds. <i>Inorganic Syntheses</i> , 2007 , 188-190		1
25	Difluorophosphoranes, Diethyl Phosphorofluoridate, Fluorotriphenylmethane, and N-Fluorodimethylamine. <i>Inorganic Syntheses</i> , 2007 , 62-67		1

24	Dinitrogen Complexes of Iron(II) with (1,2-Ethanediyldinitrilo)Tetraacetate and Trans-(1,2-Cyclohexanediyldinitrilo)Tetraacetate. <i>Inorganic Syntheses</i> , 2007 , 207-211		1
23	Nitrosyl Hexachloroplatinate(IV). <i>Inorganic Syntheses</i> , 2007 , 217-220		1
22	Pyrazole bridges ensure highly stable and insensitive bistetrazoles. <i>Chemical Engineering Journal</i> , 2021 , 431, 133282	14.7	1
21	Bis(3-(trinitromethyl)-1H-1,2,4-triazol-5-yl)methanone: A mildly acidic high-performing energetic material. <i>Chemical Engineering Journal</i> , 2021 , 133520	14.7	1
20	Nitrogen-centered radical reaction leading to energetic materials: a mild and efficient access to NN bridged compounds. <i>Journal of Materials Chemistry A</i> ,	13	1
19	Bis[Bis(Trimethylsilyl)Methylene]-Chlorophosphorane. <i>Inorganic Syntheses</i> , 2007 , 117-120		O
18	1,2-Bis(5-(trinitromethyl)-1,2,4-oxadiazol-3-yl)diazene: a water stable, high-performing green oxidizer. <i>Dalton Transactions</i> , 2021 , 50, 16929-16932	4.3	0
17	Introduction of Fluorine into Compounds via Electrophilic and Nucleophilic Reactions 2012 , 127-132		
16	Trifluoromethyl Compounds via Electrophilic and Nucleophilic Reactions 2012, 121-126		
15	Cesium Hexfluoromanganate(IV). Inorganic Syntheses, 2007, 48-50		
14	Trifluoromethyl Hypochlorite and Perfluoro-Tert-Butyl Hypochlorite (2,2,2-Trifluoro-1,1-Bis(Trifluoromethyl)Ethyl Hypochlorite). <i>Inorganic Syntheses</i> , 2007 , 58-62		
13	Nitryl Hexafluoroarsenate. <i>Inorganic Syntheses</i> , 2007 , 69-72		
12	Haloimidosulfurous Difluorides, XNSF2. <i>Inorganic Syntheses</i> , 2007 , 18-21		
11	Pentaammineiridium(III) and Hexaammineiridium(III) Complexes. <i>Inorganic Syntheses</i> , 2007 , 263-269		
10	Index of Contributers. <i>Inorganic Syntheses</i> , 2007 , 309-316		
9	Sources of Chemicals and Equipment. <i>Inorganic Syntheses</i> , 2007 , 307-308		
8	B-Thio-Trisilver(1+) Nitrate. <i>Inorganic Syntheses</i> , 2007 , 234-236		
7	Cis-Bis(1,2-Ethanediamine)Difluorochromium(III) Iodide. <i>Inorganic Syntheses</i> , 2007 , 185-187		

6 Chromium Difluoride Dioxide (Chromyl Fluoride). *Inorganic Syntheses*, **2007**, 67-69

5	Chromium(V) Fluoride and Chromium(VI) Tetrafluoride Oxide. <i>Inorganic Syntheses</i> , 2007 , 124-127	
4	Pentaammine(Trifluoromethanesulfonato-O)Rhodium(III) Trifluoromethanesulfonate, Pentaammineaquarhodium(III) Perchlorate, and Hexaamminerhodium(III) Trifluoromethanesulfonate or Perchlorate. <i>Inorganic Syntheses</i> , 2007 , 253-256	
3	Response to "What Shall We Do with Computed Detonation Performance? Comment on '1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level'". <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11571	16.4
2	Response to What Shall We Do with Computed Detonation Performance? Comment on II,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level Angewandte Chemie, 2021, 133, 11675-11675	3.6
1	Functionalized planar aromatic rings as precursors to energetic N,N?-(4,6-dinitro-1,3-phenylene)dinitramide and its salts. <i>Materials Chemistry Frontiers</i> , 2022 , 6, 933-938	37.8