Francesca Berti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1735104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applicability assessment of a stent-retriever thrombectomy finite-element model. Interface Focus, 2021, 11, 20190123.	3.0	39
2	Effect of working environment and procedural strategies on mechanical performance of bioresorbable vascular scaffolds. Acta Biomaterialia, 2018, 82, 34-43.	8.3	26
3	Fatigue Assessment of Nickel–Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models. Shape Memory and Superelasticity, 2018, 4, 186-196.	2.2	24
4	Selective laser melting of NiTi stents with open-cell and variable diameter. Smart Materials and Structures, 2021, 30, 105010.	3.5	17
5	Computational and Experimental Fatigue Analysis of Contoured Spinal Rods. Journal of Biomechanical Engineering, 2019, 141, .	1.3	15
6	The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 391-404.	1.8	14
7	A numerical investigation on multiaxial fatigue assessment of Nitinol peripheral endovascular devices with emphasis on load non-proportionality effects. Engineering Fracture Mechanics, 2019, 216, 106512.	4.3	14
8	Residual Stresses in Titanium Spinal Rods: Effects of Two Contouring Methods and Material Plastic Properties. Journal of Biomechanical Engineering, 2018, 140, .	1.3	12
9	Nickel–Titanium peripheral stents: Which is the best criterion for the multi-axial fatigue strength assessment?. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104142.	3.1	12
10	How to Validate in silico Deployment of Coronary Stents: Strategies and Limitations in the Choice of Comparator. Frontiers in Medical Technology, 2021, 3, 702656.	2.5	12
11	From the real device to the digital twin: A coupled experimental-numerical strategy to investigate a novel bioresorbable vascular scaffold. PLoS ONE, 2021, 16, e0252788.	2.5	11
12	Biomechanical interpretation of observed fatigue fractures of peripheral Nitinol stents in the superficial femoral arteries through in silico modelling. Medical Hypotheses, 2020, 142, 109771.	1.5	10
13	Validation of the computational model of a coronary stent: a fundamental step towards in silico trials. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104644.	3.1	10
14	A computational optimization study of a self-expandable transcatheter aortic valve. Computers in Biology and Medicine, 2021, 139, 104942.	7.0	9
15	Patient-specific cardiovascular superelastic NiTi stents produced by laser powder bed fusion. Procedia CIRP, 2022, 110, 242-246.	1.9	8
16	Reliable Numerical Models of Nickel-Titanium Stents: How to Deduce the Specific Material Properties from Testing Real Devices. Annals of Biomedical Engineering, 2022, 50, 467-481.	2.5	4
17	Fatigue behavior of Nitinol medical devices under multi-axial non-proportional loads. MATEC Web of Conferences, 2019, 300, 12001.	0.2	3
18	Multimodal Loading Environment Predicts Bioresorbable Vascular Scaffolds' Durability. Annals of Biomedical Engineering, 2021, 49, 1298-1307.	2.5	2

#	Article	IF	CITATIONS
19	Nickel-Titanium self-knotting suture wire for deep surgical field: A validated numerical model. Materials Today Communications, 2020, 24, 101038.	1.9	1
20	Fatigue life characterization and modeling of a Ni–Ti snake-like element for mini actuation. Smart Materials and Structures, 2020, 29, 095018.	3.5	1
21	A discussion about multi-axial fatigue criteria for NiTinol cardiovascular devices. Procedia Structural Integrity, 2018, 13, 813-818.	0.8	0