Bernardo Dias Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1735063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant-based milk products. , 2022, , 233-249.		6
2	In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnology and Applied Biochemistry, 2021, 68, 1044-1057.	3.1	16
3	Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation. Brazilian Journal of Microbiology, 2021, 52, 727-738.	2.0	14
4	Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET). Bioprocess and Biosystems Engineering, 2021, 44, 2277-2287.	3.4	4
5	Ziziphus joazeiro Stem Bark Extract as a Green Corrosion Inhibitor for Mild Steel in Acid Medium. Processes, 2021, 9, 1323.	2.8	10
6	Chemoâ€enzymatic depolymerization of industrial and assorted postâ€consumer poly(ethylene) Tj ETQqO 0 0 rgE Technology and Biotechnology, 2021, 96, 3237-3244.	3T /Overlo 3.2	ck 10 Tf 50 13
7	Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrasonics Sonochemistry, 2021, 76, 105638.	8.2	65
8	Natural eutectic solvents for sustainable recycling of poly(ethyleneterephthalate): closing the circle. Green Chemistry, 2021, 23, 9460-9464.	9.0	5
9	Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802543.	4.1	39
10	Hydrophobic deep eutectic solvents for purification of water contaminated with Bisphenol-A. Journal of Molecular Liquids, 2020, 297, 111841.	4.9	42
11	Health issues and technological aspects of plant-based alternative milk. Food Research International, 2020, 131, 108972.	6.2	150
12	Molecular Dynamics Insights and Water Stability of Hydrophobic Deep Eutectic Solvents Aided Extraction of Nitenpyram from an Aqueous Environment. Journal of Physical Chemistry B, 2020, 124, 7405-7420.	2.6	42
13	Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech, 2020, 10, 405.	2.2	19
14	Construction of wild-type Yarrowia lipolytica IMUFRJ 50682 auxotrophic mutants using dual CRISPR/Cas9 strategy for novel biotechnological approaches. Enzyme and Microbial Technology, 2020, 140, 109621.	3.2	5
15	Supplementation of watermelon peels as an enhancer of lipase and esterase production byYarrowia lipolyticain solid-state fermentation and their potential use as biocatalysts in poly(ethylene) Tj ETQq1 1 0.784314	rgള്പ് /Ove	er læck 10 T f
16	Influence of Betaine- and Choline-based Eutectic Solvents on Lipase Activity. Current Biochemical Engineering, 2019, 5, 57-68.	1.3	7
17	Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Applied Biochemistry and Biotechnology, 2019, 189, 933-959.	2.9	21
18	Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with Yarrowia lipolytica. 3 Biotech, 2019, 9, 38.	2.2	9

Bernardo Dias Ribeiro

#	Article	IF	CITATIONS
19	Deep eutectic solvents: overcoming 21st century challenges. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 31-36.	5.9	155
20	Culture Miniaturization of Lipase Production by Yarrowia lipolytica. Current Biochemical Engineering, 2019, 5, 12-20.	1.3	4
21	Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 2017, 102, 268-277.	3.6	52
22	Design and Characterization of Novel Cholineâ€Based Phthalic Salts: A Case Study for Sugarcane Bagasse Pretreatment. ChemistrySelect, 2017, 2, 8039-8042.	1.5	0
23	Adding Value to Agro-industrial Co-products from Canola and Soybean Oil Extraction Through Lipase Production Using Yarrowia lipolytica in Solid-State Fermentation. Waste and Biomass Valorization, 2017, 8, 1163-1176.	3.4	20
24	Avaliação da Estabilidade de Emulsões Cosméticas Elaboradas com Saponinas de Juá (Ziziphus joazeiro) e Sisal (Agave sisalana). Visão Acadêmica, 2017, 17, .	0.1	0
25	Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 2469-2477.	6.7	420
26	Use of micellar extraction and cloud point preconcentration for valorization of saponins from sisal (Agave sisalana) waste. Food and Bioproducts Processing, 2015, 94, 601-609.	3.6	21
27	Principles of Green Chemistry and White Biotechnology. RSC Green Chemistry, 2015, , 1-8.	0.1	5
28	CHAPTER 6. Biocatalysis in Ionic Liquids. RSC Green Chemistry, 2015, , 136-177.	0.1	1
29	CHAPTER 13. Biotransformation Using Plant Cell Culture Systems and Tissues. RSC Green Chemistry, 2015, , 333-361.	0.1	0
30	CHAPTER 15. Trends and Perspectives in Green Chemistry and White Biotechnology. RSC Green Chemistry, 2015, , 391-408.	0.1	0
31	Recovery of Saponins from Jua (<i>Ziziphus joazeiro</i>) by Micellar Extraction and Cloud Point Preconcentration. Journal of Surfactants and Detergents, 2014, 17, 553-561.	2.1	11
32	Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Advances, 2014, 4, 37157-37163.	3.6	64
33	Biotechnology and Green Chemistry. BioMed Research International, 2014, 2014, 1-2.	1.9	2
34	Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. European Food Research and Technology, 2013, 237, 965-975.	3.3	46
35	Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 736-743.	4.7	67
36	Ionic Liquids as Additives for Extraction of Saponins and Polyphenols from Mate (Ilex paraguariensis) and Tea (Camellia sinensis). Industrial & Engineering Chemistry Research, 2013, 52, 12146-12153.	3.7	52

#	Article	IF	CITATIONS
37	Carotenoids as Colorants. , 2013, , 4017-4036.		4
38	Application of foam column as green technology for concentration of saponins from sisal (Agave) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

39	Enzyme-Enhanced Extraction of Phenolic Compounds and Proteins from Flaxseed Meal. ISRN Biotechnology, 2013, 2013, 1-6.	1.9	15
40	Application of Enzymes: Proposals for an Experimental Class. Revista Virtual De Quimica, 2013, 5, .	0.4	0
41	Obtenção de extratos de guaranÃ; ricos em cafeÃna por processo enzimÃ;tico e adsorção de taninos. Brazilian Journal of Food Technology, 2012, 15, 261-270.	0.8	9
42	Production of concentrated natural beta-carotene from buriti (Mauritia vinifera) oil by enzymatic hydrolysis. Food and Bioproducts Processing, 2012, 90, 141-147.	3.6	27
43	Technological Aspects of Î ² -Carotene Production. Food and Bioprocess Technology, 2011, 4, 693-701.	4.7	121
44	Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Research, 2011, 2011, 1-16.	1.8	118
45	An ethanol-based process to simultaneously extract and fractionate carotenoids from Mauritia flexuosa L. Pulp. Revista Brasileira De Fruticultura, 2010, 32, 657-663.	0.5	8