Emilie Velot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1734784/publications.pdf

Version: 2024-02-01

39 papers

8,144 citations

18 h-index 35 g-index

39 all docs 39 docs citations

39 times ranked

14409 citing authors

#	Article	IF	CITATIONS
1	Efficient TGF- \hat{l}^21 Delivery to Articular Chondrocytes In Vitro Using Agro-Based Liposomes. International Journal of Molecular Sciences, 2022, 23, 2864.	1.8	9
2	Encapsulation of Salmon Peptides in Marine Liposomes: Physico-Chemical Properties, Antiradical Activities and Biocompatibility Assays. Marine Drugs, 2022, 20, 249.	2.2	13
3	Bone Marrow MSC Secretome Increases Equine Articular Chondrocyte Collagen Accumulation and Their Migratory Capacities. International Journal of Molecular Sciences, 2022, 23, 5795.	1.8	9
4	Is Extracellular Vesicle-Based Therapy the Next Answer for Cartilage Regeneration?. Frontiers in Bioengineering and Biotechnology, 2021, 9, 645039.	2.0	16
5	Umbilical Mesenchymal Stem Cell-Derived Extracellular Vesicle Conditioning Has an Immunosuppressive Effect on NK Cells. Biomedical and Health Research, 2021, , .	0.0	О
6	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	6.6	42
7	Nanoliposomes from Agro-Resources as Promising Delivery Systems for Chondrocytes. International Journal of Molecular Sciences, 2020, 21, 3436.	1.8	10
8	Physicochemical Properties and Liposomal Formulations of Hydrolysate Fractions of Four Sea Cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast. Molecules, 2020, 25, 2972.	1.7	3
9	Diversity and heterogeneity of extracellular RNA in human plasma. Biochimie, 2019, 164, 22-36.	1.3	26
10	The effect of nacre extract on cord bloodâ€derived endothelial progenitor cells: A natural stimulus to promote angiogenesis?. Journal of Biomedical Materials Research - Part A, 2019, 107, 1406-1413.	2.1	5
11	Dental Pulp Stem Cell-Derived Conditioned Medium: An Attractive Alternative for Regenerative Therapy. Tissue Engineering - Part B: Reviews, 2019, 25, 78-88.	2.5	73
12	Biomaterials and Gene Therapy: A Smart Combination for MSC Musculoskeletal Engineering. Current Stem Cell Research and Therapy, 2019, 14, 337-343.	0.6	11
13	Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids and Surfaces B: Biointerfaces, 2018, 167, 165-175.	2.5	49
14	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
15	Human umbilical cord derived matrix: AÂscaffold suitable for tissue engineering application. Bio-Medical Materials and Engineering, 2017, 28, S95-S100.	0.4	2
16	Evaluation of the pro-angiogenic effect of nanoscale extracellular vesicles derived fromÂhuman umbilical cord mesenchymalÂstemÂcells. Bio-Medical Materials and Engineering, 2017, 28, S75-S79.	0.4	2
17	Transforming growth factor-beta 1 or ascorbic acid are able to differentiate Wharton's jelly mesenchymal stem cells towards a smooth muscle phenotype. Bio-Medical Materials and Engineering, 2017, 28, S101-S105.	0.4	7
18	Human-derived extracellular matrix from Wharton's jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomaterialia, 2017, 48, 227-237.	4.1	23

#	Article	IF	Citations
19	How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication?. Frontiers in Cell and Developmental Biology, 2017, 5, 6.	1.8	61
20	Nanoliposomes of Marine Lecithin, a New Way to Deliver TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1$. Journal of Biomaterials and Tissue Engineering, 2017, 7, 1163-1170.	0.0	6
21	Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q10: physico-chemical properties and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2016, 147, 142-150.	2.5	15
22	Membranes combining chitosan and natural-origin nanoliposomes for tissue engineering. RSC Advances, 2016, 6, 83626-83637.	1.7	7
23	Immunomodulation of endothelial differentiated mesenchymal stromal cells: impact on T and NK cells. Immunology and Cell Biology, 2016, 94, 342-356.	1.0	19
24	Construction of biocompatible porous tissue scaffold from the decellularized umbilical artery. Bio-Medical Materials and Engineering, 2015, 25, 65-71.	0.4	1
25	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	9.4	137
26	The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. Journal of Cell Science, 2015, 128, 2415-22.	1.2	69
27	Umbilical Cord Mesenchymal Stem Cells: The New Gold Standard for Mesenchymal Stem Cell-Based Therapies?. Tissue Engineering - Part B: Reviews, 2014, 20, 523-544.	2.5	239
28	Heterozygous deletion of the Williams–Beuren syndrome critical interval in mice recapitulates most features of the human disorder. Human Molecular Genetics, 2014, 23, 6481-6494.	1.4	69
29	Reversing charges or how to improve Wharton's jelly mesenchymal stem cells culture on polyelectrolyte multilayer films. Bio-Medical Materials and Engineering, 2013, 23, 299-309.	0.4	9
30	Brillouin spectroscopy: A new tool to decipher viscoelastic properties of biological scaffold functionalized with nanoscale films. Bio-Medical Materials and Engineering, 2013, 23, 251-261.	0.4	2
31	The in vivo Down syndrome genomic library in mouse. Progress in Brain Research, 2012, 197, 169-197.	0.9	33
32	Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Investigational New Drugs, 2012, 30, 2121-2131.	1.2	78
33	Stem cells differentiation induced by physical stimulation using piezoelectric nanocomposite material., 2012,,.		0
34	Differential Signaling by Adaptor Molecules LRP1 and ShcA Regulates Adipogenesis by the Insulin-like Growth Factor-1 Receptor. Journal of Biological Chemistry, 2011, 286, 16775-16782.	1.6	25
35	xmins:mmi="http://www.w3.org/1998/Math/MathML"> <mmi:mi>i±</mmi:mi> , <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>j²</mml:mi>/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>j²</mml:mi>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>j³</mml:mi>Impairs</mml:math </mml:math </mmi:math 	1.1	20
36	Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovascular Research, 2008, 80, 246-254.	1.8	31

EMILIE VELOT

#	Article	IF	CITATIONS
37	472 Adenosine switches macrophages from a pro-inflammatory to an angiogenic phenotype. European Journal of Heart Failure, Supplement, 2007, 6, 102-102.	0.2	0
38	473 Adenosine stimulates matrix metalloproteinase-9 secretion by THP-1-derived macrophages. European Journal of Heart Failure, Supplement, 2007, 6, 102-102.	0.2	0
39	Adenosine Inhibits Matrix Metalloproteinase-9 Secretion By Neutrophils. Circulation Research, 2006, 99, 590-597.	2.0	62