Andre Ricardo Fajardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/173414/publications.pdf

Version: 2024-02-01

86 papers 4,679 citations

94415 37 h-index 102480 66 g-index

88 all docs 88 docs citations

88 times ranked 5872 citing authors

#	Article	IF	CITATIONS
1	Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 2015, 72, 365-385.	5.4	514
2	Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization. Journal of Polymer Research, 2012, 19, 1.	2.4	293
3	Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic) Tj ETQq1 1 0.7	'84314 rgl 10.2	BT /Overlock :
4	Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
5	Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups of Poly(vinyl alcohol) and Poly(acrylic acid): Is This Reaction Mechanism Still Unclear?. Journal of Organic Chemistry, 2009, 74, 3750-3757.	3.2	160
6	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	4.3	154
7	Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 2021, 284, 124703.	9.3	141
8	Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydrate Polymers, 2018, 189, 257-266.	10.2	127
9	Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 2012, 19, 1225-1237.	4.9	126
10	Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 2012, 48, 454-463.	5.4	118
11	Fast dye removal from water by starch-based nanocomposites. Journal of Colloid and Interface Science, 2015, 454, 200-209.	9.4	111
12	Characterization of polyelectrolytes complexes based on N,N,N-trimethyl chitosan/heparin prepared at different pH conditions. Carbohydrate Polymers, 2011, 86, 1266-1272.	10.2	97
13	Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance. Journal of Applied Polymer Science, 2007, 105, 2903-2909.	2.6	95
14	Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Materials Science and Engineering C, 2013, 33, 588-595.	7.3	92
15	Hydrogel based on an alginate–Ca2+/chondroitin sulfate matrix as a potential colon-specific drug delivery system. RSC Advances, 2012, 2, 11095.	3.6	88
16	Time- and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohydrate Polymers, 2010, 80, 934-943.	10.2	75
17	Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydrate Polymers, 2012, 90, 1216-1225.	10.2	74
18	Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release. Journal of Nanomaterials, 2011, 2011, 1-6.	2.7	72

#	Article	lF	CITATIONS
19	Starch-based microspheres for sustained-release of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydrate Polymers, 2013, 98, 711-720.	10.2	72
20	Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 2017, 177, 443-450.	10.2	72
21	Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydrate Polymers, 2017, 157, 660-668.	10.2	72
22	Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydrate Polymers, 2017, 161, 187-196.	10.2	70
23	Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. International Journal of Pharmaceutics, 2018, 552, 340-351.	5.2	66
24	Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arabian Journal of Chemistry, 2020, 13, 2183-2194.	4.9	64
25	Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 2014, 131, .	2.6	60
26	Development and application of chitosan/poly(vinyl alcohol) films for removal and recovery of Pb(II). Chemical Engineering Journal, 2012, 183, 253-260.	12.7	59
27	Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. Reactive and Functional Polymers, 2013, 73, 1662-1671.	4.1	58
28	Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: Preparation and characterization. EXPRESS Polymer Letters, 2012, 6, 383-395.	2.1	54
29	Methylene Blue Adsorption on Chitosan-g-Poly(Acrylic Acid)/Rice Husk Ash Superabsorbent Composite: Kinetics, Equilibrium, and Thermodynamics. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	53
30	Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iranian Polymer Journal (English Edition), 2017, 26, 93-105.	2.4	51
31	Polyelectrolyte complexes based on pectin–NH2 and chondroitin sulfate. Carbohydrate Polymers, 2012, 87, 1950-1955.	10.2	50
32	Enhanced photocatalytic degradation of organic pollutants mediated by Zn(II)-porphyrin/poly(acrylic) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
33	Poly(acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Composites Part B: Engineering, 2013, 51, 246-253.	12.0	43
34	Preparation, characterization and antitumor activity of a cationic starch-derivative membrane embedded with a β-cyclodextrin/curcumin inclusion complex. International Journal of Biological Macromolecules, 2020, 148, 140-152.	7.5	41
35	Magnetic microspheres based on pectin coated by chitosan towards smart drug release. Carbohydrate Polymers, 2021, 265, 118013.	10.2	41
36	Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. European Polymer Journal, 2010, 46, 1465-1474.	5.4	39

#	Article	IF	Citations
37	Chitosan/poly(vinyl alcohol)/bovine bone powder biocomposites: A potential biomaterial for the treatment of atopic dermatitis-like skin lesions. Carbohydrate Polymers, 2016, 148, 115-124.	10.2	39
38	Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. Arabian Journal of Chemistry, 2020, 13, 709-720.	4.9	39
39	First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: Fabrication, characterization, and antibacterial activity. Carbohydrate Polymers, 2020, 250, 116954.	10.2	39
40	Co-nanoencapsulation of antimalarial drugs increases their in vitro efficacy against Plasmodium falciparum and decreases their toxicity to Caenorhabditis elegans. European Journal of Pharmaceutical Sciences, 2018, 118, 1-12.	4.0	38
41	Adsorption of benzene and toluene from aqueous solution using a composite hydrogel of alginate-grafted with mesoporous silica. Journal of Hazardous Materials, 2021, 418, 126405.	12.4	37
42	Sulfated Glycosaminoglycan-Based Block Copolymer: Preparation of Biocompatible Chondroitin Sulfate- <i>b</i> -poly(lactic acid) Micelles. Biomacromolecules, 2014, 15, 2691-2700.	5.4	35
43	Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catalysis Science and Technology, 2019, 9, 136-145.	4.1	33
44	Recent Advances in Designing Hydrogels from Chitin and Chitin-Derivatives and their Impact on Environment and Agriculture: A Review. Revista Virtual De Quimica, 2017, 9, 370-386.	0.4	33
45	Polysaccharide-Based Materials Associated with or Coordinated to Gold Nanoparticles: Synthesis and Medical Application. Current Medicinal Chemistry, 2017, 24, 2701-2735.	2.4	33
46	Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: design, optimization, and application. Cellulose, 2019, 26, 9119-9133.	4.9	32
47	Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: A review. Trends in Environmental Analytical Chemistry, 2019, 22, e00062.	10.3	31
48	Synthesis of chitosan derivatives with organoselenium and organosulfur compounds: Characterization, antimicrobial properties and application as biomaterials. Carbohydrate Polymers, 2019, 219, 240-250.	10.2	29
49	Kinetic study of Chondroitin Sulphate release from Chondroitin Sulphate/Chitosan complex hydrogel. Journal of Molecular Liquids, 2010, 156, 28-32.	4.9	26
50	Effect of stoichiometry and pH on the structure and properties of Chitosan/Chondroitin sulfate complexes. Colloid and Polymer Science, 2011, 289, 1739-1748.	2.1	25
51	Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. Materials Science and Engineering C, 2018, 84, 90-98.	7.3	25
52	Hybrid hydrogels containing one-step biosynthesized silver nanoparticles: Preparation, characterization and catalytic application. Journal of Industrial and Engineering Chemistry, 2019, 79, 326-337.	5.8	25
53	Supported porphyrins for the photocatalytic degradation of organic contaminants in water: a review. Environmental Chemistry Letters, 2022, 20, 731-771.	16.2	25
54	Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123970.	4.7	24

#	Article	lF	CITATIONS
55	Synthesis and characterization of chitosanâ€ <i>graft</i> êpoly(acrylic acid)/nontronite hydrogel composites based on a design of experiments. Journal of Applied Polymer Science, 2013, 128, 3480-3489.	2.6	22
56	Superabsorbent Hydrogel Composite Based on Starch/Rice Husk Ash as a Soil Conditioner in Melon (Cucumis melo L.) Seedling Culture. Journal of Polymers and the Environment, 2020, 28, 131-140.	5.0	21
57	Glassy carbon electrode modified with carbon black and cross-linked alginate film: a new voltammetric electrode for paraquat determination. Analytical and Bioanalytical Chemistry, 2019, 411, 3269-3280.	3.7	20
58	Curcumin-loaded nanocapsules: Influence of surface characteristics on technological parameters and potential antimalarial activity. Materials Science and Engineering C, 2021, 118, 111356.	7.3	19
59	Polysaccharide/Fe(III)-porphyrin hybrid film as catalyst for oxidative decolorization of toxic azo dyes: An approach for wastewater treatment. Arabian Journal of Chemistry, 2020, 13, 5923-5938.	4.9	17
60	Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites. Carbohydrate Polymers, 2021, 266, 118116.	10.2	16
61	Twoâ€step synthesis and properties of a magneticâ€fieldâ€sensitive modified maltodextrinâ€based hydrogel. Polymer International, 2011, 60, 1324-1333.	3.1	15
62	Alginate–copper microspheres as efficient and reusable heterogeneous catalysts for the one-pot synthesis of 4-organylselanyl-1H-pyrazoles. Catalysis Science and Technology, 2020, 10, 3918-3930.	4.1	15
63	Hydrogels Nanocomposites Based on Crystals, Whiskers and Fibrils Derived from Biopolymers. Advanced Structured Materials, 2015, , 43-71.	0.5	14
64	Biopolymeric films as delivery vehicles for controlled release of hydrocortisone: Promising devices to treat chronic skin diseases. Materials Science and Engineering C, 2020, 114, 111074.	7.3	14
65	Development of superabsorbent hydrogel based on Gum Arabic for enhanced removal of anxiolytic drug from water. Journal of Environmental Management, 2021, 288, 112455.	7.8	14
66	Organoselenium-chitosan derivative: Synthesis via "click―reaction, characterization and antioxidant activity. International Journal of Biological Macromolecules, 2021, 191, 19-26.	7.5	14
67	Sub- and supercritical D-limonene technology as a green process to recover glass fibres from glass fibre-reinforced polyester composites. Journal of Cleaner Production, 2020, 254, 119984.	9.3	13
68	Enzymatic depolymerization – An easy approach to reduce the chondroitin sulfate molecular weight. Process Biochemistry, 2018, 74, 118-124.	3.7	9
69	Hydrogen generation and hydrogenation reactions efficiently mediated by a thin film of reduced graphene oxide-grafted with carboxymethyl chitosan and Ag nanoparticles. Journal of Colloid and Interface Science, 2021, 583, 626-641.	9.4	9
70	Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. International Journal of Biological Macromolecules, 2021, 193, 1032-1042.	7.5	9
71	Incorporation of theophylline in a chitosan/chondroitin sulfate hydrogel matrix: <i>In vitro</i> release studies and mechanical properties according to pH changes. Journal of Applied Polymer Science, 2013, 128, 3417-3424.	2.6	8
72	Development, characterization and biocompatibility of chondroitin sulfate/poly(vinyl alcohol)/bovine bone powder porous biocomposite. Materials Science and Engineering C, 2017, 72, 526-535.	7.3	8

#	Article	IF	Citations
73	Hybrid polymer aerogels containing porphyrins as catalysts for efficient photodegradation of pharmaceuticals in water. Journal of Colloid and Interface Science, 2022, 613, 461-476.	9.4	8
74	Utilization of Pineapple Crown Fiber and Recycled Polypropylene for Production of Sustainable Composites. Journal of Renewable Materials, 2020, 8, 1327-1341.	2.2	8
7 5	Vapor-induced polyelectrolyte complexation of chitosan/pectin: A promising strategy for the preparation of hydrogels for controlled drug delivery. Journal of Molecular Liquids, 2022, 361, 119604.	4.9	7
76	The efficacy of microemulsion-based delivery to improve vitamin E properties: evaluation of the antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice. Journal of Pharmacy and Pharmacology, 2018, 70, 1723-1732.	2.4	6
77	Hydrogels Based on Chitosan and Chitosan Derivatives for Biomedical Applications. , 0, , .		6
78	(3Z)-5-Chloro-3-(Hydroxyimino)indolin-2-one attenuates hyperglycemia, increased hepatic glycogen content and hepatic damage induced by malathion acute exposure in rats. Nutrition and Metabolism, 2019, 16, 61.	3.0	6
79	Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontiumâ€doped hydroxyapatite as promising biomaterials. Journal of Biomedical Materials Research - Part A, 2021, 109, 1160-1172.	4.0	6
80	Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. International Journal of Pharmaceutics, 2022, 611, 121285.	5.2	6
81	NOVEL SUPERABSORBENT HYDROGEL COMPOSITE BASED ON POLY(ACRYLAMIDE- <i>CO</i> ACRYLATE)/NONTRONITE: CHARACTERIZATION AND SWELLING PERFORMANCE. Quimica Nova, 2015, , .	0.3	5
82	Copper species supported in polysaccharide-based materials: from preparation to application in catalysis. Catalysis Reviews - Science and Engineering, 0, , 1-66.	12.9	4
83	Chitosan-Based Hydrogels for Drug Delivery. , 2019, , 163-190.		4
84	Phosphine-Functionalized Chitosan Microparticles as Support Materials for Palladium Nanoparticles in Heck Reactions. Catalysis Letters, 2022, 152, 2933-2946.	2.6	4
85	The Method of Small-Angle X-ray Scattering and Its Application to the Structural Analysis of Oligoand Polysaccharides in Solution., 2016,, 281-340.		2
86	Outstanding Features of Starch-based Hydrogel Nanocomposites. RSC Green Chemistry, 2015, , 236-262.	0.1	1