
Elisabeth Anne Herniou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/173393/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Virulence and genetic characterization of six baculovirus strains isolated from different populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). Archives of Microbiology, 2022, 204, 108.	2.2	5
2	Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects. Current Opinion in Insect Science, 2022, 50, 100876.	4.4	3
3	First Evidence of Past and Present Interactions between Viruses and the Black Soldier Fly, Hermetia illucens. Viruses, 2022, 14, 1274.	3.3	5
4	Monitoring Insect Transposable Elements in Large Double-Stranded DNA Viruses Reveals Host-to-Virus and Virus-to-Virus Transposition. Molecular Biology and Evolution, 2021, 38, 3512-3530.	8.9	8
5	Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Communications Biology, 2021, 4, 104.	4.4	27
6	Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids. Viruses, 2020, 12, 6.	3.3	27
7	Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evolution, 2020, 6, vez060.	4.9	24
8	ICTV Virus Taxonomy Profile: Nudiviridae. Journal of General Virology, 2020, 101, 3-4.	2.9	19
9	Viruses in the Invasive Hornet Vespa velutina. Viruses, 2019, 11, 1041.	3.3	39
10	Relative Influence of Host, Wolbachia, Geography and Climate on the Genetic Structure of the Sub-saharan Parasitic Wasp Cotesia sesamiae. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	7
11	Genetic footprints of adaptive divergence in the bracovirus of <i>Cotesia sesamiae</i> identified by targeted resequencing. Molecular Ecology, 2018, 27, 2109-2123.	3.9	23
12	The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps. Parasitology, 2018, 145, 713-723.	1.5	45
13	The Domestication of a Large DNA Virus by the Wasp Venturia canescens Involves Targeted Genome Reduction through Pseudogenization. Genome Biology and Evolution, 2018, 10, 1745-1764.	2.5	28
14	Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, 2018, 10, 366.	3.3	33
15	Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evolution, 2018, 4, vex040.	4.9	17
16	ICTV Virus Taxonomy Profile: Baculoviridae. Journal of General Virology, 2018, 99, 1185-1186.	2.9	101
17	The Cotesia sesamiae story: insight into host-range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs. Genetica, 2017, 145, 455-468.	1.1	28
18	Endogenous viruses of parasitic wasps: variations on a common theme. Current Opinion in Virology, 2017, 25, 41-48.	5.4	70

Elisabeth Anne Herniou

#	Article	IF	CITATIONS
19	Foreign DNA acquisition by invertebrate genomes. Journal of Invertebrate Pathology, 2017, 147, 157-168.	3.2	32
20	Systematics and biology of Cotesia typhae sp. n. (Hymenoptera, Braconidae, Microgastrinae), a potential biological control agent against the noctuid Mediterranean corn borer, Sesamia nonagrioides. ZooKeys, 2017, 682, 105-136.	1.1	37
21	Impact of Lateral Transfers on the Genomes of Lepidoptera. Genes, 2017, 8, 315.	2.4	18
22	Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies. Journal of General Virology, 2017, 98, 284-295.	2.9	10
23	The discovery of Halictivirus resolves the Sinaivirus phylogeny. Journal of General Virology, 2017, 98, 2864-2875.	2.9	31
24	Continuous Influx of Genetic Material from Host to Virus Populations. PLoS Genetics, 2016, 12, e1005838.	3.5	63
25	Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations. Viruses, 2015, 7, 3625-3646.	3.3	57
26	Ongoing ecological speciation in <i>Cotesia sesamiae</i> , a biological control agent of cereal stem borers. Evolutionary Applications, 2015, 8, 807-820.	3.1	36
27	The Genome of the Nucleopolyhedrosis-Causing Virus from Tipula oleracea Sheds New Light on the Nudiviridae Family. Journal of Virology, 2015, 89, 3008-3025.	3.4	49
28	The systematics of Echinorhynchus Zoega in Müller, 1776 (Acanthocephala, Echinorhynchidae) elucidated by nuclear and mitochondrial sequence data from eight European taxa. ZooKeys, 2015, 484, 25-52.	1.1	24
29	Gene Acquisition Convergence between Entomopoxviruses and Baculoviruses. Viruses, 2015, 7, 1960-1974.	3.3	41
30	Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors. Journal of Virology, 2015, 89, 8909-8921.	3.4	49
31	Genomic diversity in European Spodoptera exigua multiple nucleopolyhedrovirus isolates. Journal of General Virology, 2014, 95, 2297-2309.	2.9	29
32	Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nature Communications, 2014, 5, 3348.	12.8	97
33	When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130051.	4.0	150
34	Functional endogenous viral elements in the genome of the parasitoid wasp <i>Cotesia congregata</i> : insights into the evolutionary dynamics of bracoviruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130047.	4.0	68
35	New Insights into the Evolution of Entomopoxvirinae from the Complete Genome Sequences of Four Entomopoxviruses Infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana, and Mythimna separata. Journal of Virology, 2013, 87, 7992-8003.	3.4	43
36	Adaptive Selection on Bracovirus Genomes Drives the Specialization of Cotesia Parasitoid Wasps. PLoS ONE, 2013, 8, e64432.	2.5	54

#	Article	IF	CITATIONS
37	Multiple functionally divergent and conserved copies of alpha tubulin in bdelloid rotifers. BMC Evolutionary Biology, 2012, 12, 148.	3.2	13
38	Evolutionary Progenitors of Bracoviruses. , 2012, , 15-31.		13
39	Paleozoic origin of insect large dsDNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15931-15935.	7.1	136
40	Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution, 2009, 53, 182-189.	2.7	160
41	A faunistic survey of bdelloid rotifers in Turkey. Zoology in the Middle East, 2009, 48, 114-116.	0.6	8
42	Inconsistent estimates of diversity between traditional and DNA taxonomy in bdelloid rotifers. Organisms Diversity and Evolution, 2009, 9, 3-12.	1.6	23
43	Molecular evidence for broadâ€scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology, 2008, 17, 3136-3146.	3.9	103
44	Independently Evolving Species in Asexual Bdelloid Rotifers. PLoS Biology, 2007, 5, e87.	5.6	311
45	Baculovirus Phylogeny and Evolution. Current Drug Targets, 2007, 8, 1043-1050.	2.1	110
46	Evidence for Inefficient Selection Against Deleterious Mutations in Cytochrome Oxidase I of Asexual Bdelloid Rotifers. Molecular Biology and Evolution, 2007, 24, 1952-1962.	8.9	64
47	On the reality and recognisability of asexual organisms: morphological analysis of the masticatory apparatus of bdelloid rotifers. Zoologica Scripta, 2007, 36, 361-370.	1.7	22
48	On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of Virology, 2006, 151, 1257-1266.	2.1	481
49	Genomic comparison of Neodiprion sertifer and Neodiprion lecontei nucleopolyhedroviruses and identification of potential hymenopteran baculovirus-specific open reading frames. Journal of General Virology, 2006, 87, 1477-1489.	2.9	33
50	Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. Journal of General Virology, 2005, 86, 2069-2080.	2.9	73
51	Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology, 2004, 330, 460-470.	2.4	39
52	Ancient Coevolution of Baculoviruses and Their Insect Hosts. Journal of Virology, 2004, 78, 3244-3251.	3.4	144
53	Why do species exist? Insights from sexuals and asexuals. Zoology, 2003, 106, 275-282.	1.2	14
54	Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Systematic Parasitology, 2003, 54, 159-176.	1.1	115

#	Article	IF	CITATIONS
55	The Interrelationships of the Gastrotricha Using Nuclear Small rRNA Subunit Sequence Data, with an Interpretation Based on Morphology. Zoologischer Anzeiger, 2003, 242, 145-156.	0.9	50
56	THEGENOMESEQUENCE ANDEVOLUTION OFBACULOVIRUSES. Annual Review of Entomology, 2003, 48, 211-234.	11.8	402
57	Characterization and Complete Nucleotide Sequence of an Unusual Reptilian Retrovirus Recovered from the Order Crocodylia. Journal of Virology, 2002, 76, 4651-4654.	3.4	14
58	Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. Journal of General Virology, 2002, 83, 957-971.	2.9	88
59	The evolutionary nature of diversification in sexuals and asexuals. , 2001, , 29-45.		6
60	Elongation Factor 1-Alpha Sequences Alone Do Not Assist in Resolving the Position of the Acoela Within the Metazoa. Molecular Biology and Evolution, 2001, 18, 437-442.	8.9	56
61	Use of Whole Genome Sequence Data To Infer Baculovirus Phylogeny. Journal of Virology, 2001, 75, 8117-8126.	3.4	294
62	Phylogenies Inferred from Mitochondrial Gene Orders—A Cautionary Tale from the Parasitic Flatworms. Molecular Biology and Evolution, 2000, 17, 1123-1125.	8.9	187
63	The Interrelationships of Proseriata (Platyhelminthes: Seriata) Tested with Molecules and Morphology. Molecular Phylogenetics and Evolution, 2000, 16, 449-466.	2.7	346
64	Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11359-11364.	7.1	223
65	Phylogeny of the Platyhelminthes and the evolution of parasitism. Biological Journal of the Linnean Society, 1999, 68, 257-287.	1.6	95
66	Identification of Multiple Gypsy LTR-Retrotransposon Lineages in Vertebrate Genomes. Journal of Molecular Evolution, 1999, 49, 358-366.	1.8	48
67	Acoel Flatworms: Earliest Extant Bilaterian Metazoans, Not Members of Platyhelminthes. Science, 1999, 283, 1919-1923.	12.6	427
68	Interclass Transmission and Phyletic Host Tracking in Murine Leukemia Virus-Related Retroviruses. Journal of Virology, 1999, 73, 2442-2449.	3.4	106
69	Vintage Helminths Yield Valuable Molecules. Parasitology Today, 1998, 14, 289-292.	3.0	14
70	A phylogenetic reconstruction of the Ichneumonoidea (Hymenoptera) based on the D2 variable region of 28S ribosomal RNA. Systematic Entomology, 1998, 23, 109-123.	3.9	124
71	Retroviral Diversity and Distribution in Vertebrates. Journal of Virology, 1998, 72, 5955-5966.	3.4	172
72	Three retroviral sequences in amphibians are distinct from those in mammals and birds. Journal of Virology, 1996, 70, 4864-4870.	3.4	21

#	Article	IF	CITATIONS
73	Easel, a gypsy LTR-retrotransposon in the Salmonidae. Molecular Genetics and Genomics, 1995, 249, 229-236.	2.4	19