
Lingren Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. Journal of Materials Chemistry B, 2014, 2, 363-375.	5.8	162
2	Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. Journal of Membrane Science, 2015, 475, 455-468.	8.2	142
3	Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. Biomaterials Science, 2014, 2, 98-109.	5.4	77
4	Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. Journal of Materials Chemistry B, 2016, 4, 3203-3215.	5.8	67
5	Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. Journal of Materials Chemistry B, 2015, 3, 1391-1404.	5.8	58
6	Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. ACS Biomaterials Science and Engineering, 2015, 1, 1183-1193.	5.2	30
7	Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomaterials Science, 2017, 5, 2416-2426.	5.4	27
8	A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers. Materials Science and Engineering C, 2014, 37, 68-75.	7.3	25
9	Ascidian-Inspired Heparin-Mimetic Magnetic Nanoparticles with Potential for Application in Hemodialysis as Recycling Anticoagulants. ACS Biomaterials Science and Engineering, 2020, 6, 1998-2006.	5.2	15
10	Preparation of Ascidian-Inspired Hydrogel Thin Films to Selectively Induce Vascular Endothelial Cell and Smooth Muscle Cell Growth. ACS Applied Bio Materials, 2020, 3, 2068-2077.	4.6	10
11	Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules. International Journal of Biological Macromolecules, 2014, 67, 260-269.	7.5	8
12	One step preparation of multifunctional poly (ether sulfone) thin films with potential for wound dressing. , 2022, 136, 212758.		6
13	Oneâ€pot synthesized poly(vinyl pyrrolidoneâ€ <i>co</i> â€methyl methacrylateâ€ <i>co</i> â€acrylic acid) blende with poly(ether sulfone) to prepare bloodâ€compatible membranes. Journal of Applied Polymer Science, 2013, 130, 4284-4298.	d 2.6	5
14	Direct synthesis of substrate-independent nanoparticles for antibacterial application. Materials Research Express, 2021, 8, 075402.	1.6	2