Joseph J Richardson

List of Publications by Citations

Source: https://exaly.com/author-pdf/1733759/joseph-j-richardson-publications-by-citations.pdf

Version: 2024-04-02

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

124
papers8,135
citations42
h-index89
g-index136
ext. papers9,978
ext. citations12.4
avg, IF6.52
L-index

#	Paper	IF	Citations
124	One-step assembly of coordination complexes for versatile film and particle engineering. <i>Science</i> , 2013 , 341, 154-7	33.3	1227
123	Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. <i>Science</i> , 2015 , 348, aaa24	193/3.3	1031
122	Engineering multifunctional capsules through the assembly of metal-phenolic networks. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5546-51	16.4	540
121	Innovation in Layer-by-Layer Assembly. <i>Chemical Reviews</i> , 2016 , 116, 14828-14867	68.1	521
120	Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. <i>Nano Today</i> , 2017 , 12, 136-148	17.9	280
119	Modular assembly of superstructures from polyphenol-functionalized building blocks. <i>Nature Nanotechnology</i> , 2016 , 11, 1105-1111	28.7	251
118	Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. <i>Advanced Materials</i> , 2016 , 28, 7910-7914	24	192
117	Coatings super-repellent to ultralow surface tension liquids. <i>Nature Materials</i> , 2018 , 17, 1040-1047	27	190
116	Phenolic Building Blocks for the Assembly of Functional Materials. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1904-1927	16.4	189
115	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. <i>Small</i> , 2015 , 11, 2032-6	11	160
114	Engineering robust metalphenolic network membranes for uranium extraction from seawater. Energy and Environmental Science, 2019 , 12, 607-614	35.4	151
113	An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8510-8515	16.4	120
112	Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano, 2015, 9, 1571-80	16.7	119
111	Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19822-19831	13	112
110	Nanoengineered Templated Polymer Particles: Navigating the Biological Realm. <i>Accounts of Chemical Research</i> , 2016 , 49, 1139-48	24.3	105
109	Engineering Multifunctional Capsules through the Assembly of Metal P henolic Networks. <i>Angewandte Chemie</i> , 2014 , 126, 5652-5657	3.6	99
108	Polyphenol-Mediated Assembly for Particle Engineering. <i>Accounts of Chemical Research</i> , 2020 , 53, 1269	9-1478	94

(2016-2019)

107	Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. <i>CheM</i> , 2019 , 5, 1597-1608	16.2	86	
106	Biomimetic Replication of Microscopic Metal-Organic Framework Patterns Using Printed Protein Patterns. <i>Advanced Materials</i> , 2015 , 27, 7293-8	24	85	
105	Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. <i>Soft Matter</i> , 2014 , 10, 2656-63	3.6	84	
104	Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin. <i>Advanced Science</i> , 2019 , 6, 1801688	13.6	71	
103	Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. <i>Biomacromolecules</i> , 2016 , 17, 2268-76	6.9	7°	
102	Preparation of nano- and microcapsules by electrophoretic polymer assembly. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6455-8	16.4	65	
101	Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 11653-11664	16.7	63	
100	Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5578-5596	5.5	62	
99	Spray Assembly of Metal-Phenolic Networks: Formation, Growth, and Applications. <i>ACS Applied Materials & ACS Applied</i> (1997) 10, 33721-33729	9.5	61	
98	Polyphenol-Mediated Assembly of Proteins for Engineering Functional Materials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15618-15625	16.4	56	
97	Self-Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700467	10.1	55	
96	Nanobiohybrids: Materials approaches for bioaugmentation. <i>Science Advances</i> , 2020 , 6, eaaz0330	14.3	55	
95	Endocytic pH-triggered degradation of nanoengineered multilayer capsules. <i>Advanced Materials</i> , 2014 , 26, 1901-5	24	55	
94	Biomimetic mineralization of metal-organic frameworks around polysaccharides. <i>Chemical Communications</i> , 2017 , 53, 1249-1252	5.8	54	
93	Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. <i>Green Chemistry</i> , 2018 , 20, 1335-1344	10	51	
92	Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. <i>Applied Materials Today</i> , 2018 , 10, 93-105	6.6	51	
91	Immersive polymer assembly on immobilized particles for automated capsule preparation. <i>Advanced Materials</i> , 2013 , 25, 6874-8	24	50	
90	Improving Targeting of Metal-Phenolic Capsules by the Presence of Protein Coronas. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 22914-22	9.5	49	

89	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. <i>Advanced Functional Materials</i> , 2019 , 29, 1808900	15.6	48
88	Phenolic film engineering for template-mediated microcapsule preparation. <i>Polymer Journal</i> , 2014 , 46, 452-459	2.7	45
87	Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks. <i>Langmuir</i> , 2017 , 33, 10616-1	0.622	44
86	Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. <i>ACS Applied Materials & Description of the Communication of the </i>	9.5	44
85	Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1796-801	10.1	43
84	Nano-Biohybrids: In Vivo Synthesis of Metal-Organic Frameworks inside Living Plants. <i>Small</i> , 2018 , 14, 1702958	11	43
83	Synthesis of Metal Nanoparticles in Metal-Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700934	10.1	42
82	Nanoporous Metal-Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2170-2175	10.1	42
81	Ordered Mesoporous Metal-Phenolic Network Particles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 335-341	16.4	42
80	A Framework to Account for Sedimentation and Diffusion in Particle-Cell Interactions. <i>Langmuir</i> , 2016 , 32, 12394-12402	4	41
79	Peptide-tunable drug cytotoxicity via one-step assembled polymer nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 2398-402	24	40
78	Self-Assembly of Nano- to Macroscopic Metal P henolic Materials. <i>Chemistry of Materials</i> , 2018 , 30, 5750-	-5 7.6 8	38
77	Oxidation-Mediated Kinetic Strategies for Engineering Metal-Phenolic Networks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12563-12568	16.4	37
76	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. <i>Advanced Materials</i> , 2020 , 32, e1906886	24	34
75	Self-assembled stimuli-responsive polyrotaxane core-shell particles. <i>Biomacromolecules</i> , 2014 , 15, 53-9	6.9	33
74	Redox-Sensitive PEG-Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. <i>Biomacromolecules</i> , 2015 , 16, 2168-78	6.9	32
73	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. <i>Advanced Science</i> , 2015 , 2, 140000	073.6	32
72	Continuous Metal Drganic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry and Engineering, 2019, 7, 6287-6294	8.3	32

(2020-2014)

71	Fluidized bed layer-by-layer microcapsule formation. <i>Langmuir</i> , 2014 , 30, 10028-34	4	31
70	Polymer Capsules for Plaque-Targeted In Vivo Delivery. <i>Advanced Materials</i> , 2016 , 28, 7703-7	24	28
69	Particle engineering enabled by polyphenol-mediated supramolecular networks. <i>Nature Communications</i> , 2020 , 11, 4804	17.4	28
68	An Enzyme-Coated Metal©rganic Framework Shell for Synthetically Adaptive Cell Survival. <i>Angewandte Chemie</i> , 2017 , 129, 8630-8635	3.6	27
67	Expression of Programmed Cell Death-Ligands in Hepatocellular Carcinoma: Correlation With Immune Microenvironment and Survival Outcomes. <i>Frontiers in Oncology</i> , 2019 , 9, 883	5.3	27
66	Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration. <i>Langmuir</i> , 2015 , 31, 9054-60	4	27
65	Phenolische Bausteine fildie Assemblierung von Funktionsmaterialien. <i>Angewandte Chemie</i> , 2019 , 131, 1920-1945	3.6	27
64	Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics. <i>Langmuir</i> , 2015 , 31, 7776-81	4	26
63	Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 275-280	16.4	26
62	Surface Engineering of Extracellular Vesicles through Chemical and Biological Strategies Chemistry of Materials, 2019 , 31, 2191-2201	9.6	24
61	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal-Phenolic Network Films. <i>Biomacromolecules</i> , 2019 , 20, 1421-1428	6.9	24
60	Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. <i>Nano Letters</i> , 2020 , 20, 2660-2666	11.5	24
59	Expanding the Toolbox of Metal-Phenolic Networks via Enzyme-Mediated Assembly. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1711-1717	16.4	24
58	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery Competing Supramolecular Interactions. <i>ACS Nano</i> , 2020 , 14, 12972-12981	16.7	24
57	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. <i>ACS Applied Materials & District Materia</i>	9.5	23
56	Stiffness-mediated adhesion of cervical cancer cells to soft hydrogel films. <i>Soft Matter</i> , 2013 , 9, 4580	3.6	23
55	Acoustomicrofluidic assembly of oriented and simultaneously activated metal-organic frameworks. <i>Nature Communications</i> , 2019 , 10, 2282	17.4	22
54	Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. <i>Biomaterials</i> , 2020 , 235, 119784	15.6	22

53	Tuning the Mechanical Behavior of Metal-Phenolic Networks through Building Block Composition. <i>ACS Applied Materials & Distributed & Distr</i>	9.5	19
52	Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. <i>Advanced Biology</i> , 2019 , 3, e1800241	3.5	19
51	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. <i>Biomacromolecules</i> , 2019 , 20, 3592-3600	6.9	18
50	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks. <i>Nanoscale</i> , 2019 , 11, 1921-1928	7.7	18
49	Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. <i>Current Medicinal Chemistry</i> , 2019 , 26, 6107-6131	4.3	18
48	X-ray-Based Techniques to Study the Nano-Bio Interface. <i>ACS Nano</i> , 2021 , 15, 3754-3807	16.7	18
47	Engineered Coatings via the Assembly of Amino-Quinone Networks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2346-2354	16.4	18
46	Assembly-Controlled Permeability of Layer-by-Layer Polymeric Microcapsules Using a Tapered Fluidized Bed. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27940-7	9.5	17
45	Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect. <i>Materials Science and Engineering C</i> , 2020 , 106, 110280	8.3	17
44	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. <i>Science Advances</i> , 2021 , 7, eabh3482	14.3	17
43	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. <i>Nanoscale</i> , 2014 , 6, 13416-20	7.7	16
42	Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles. Water, Air, and Soil Pollution, 2018 , 229, 1	2.6	15
41	Endocytic capsule sensors for probing cellular internalization. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1551-4, 1524	10.1	14
40	Programmable Permeability of Metal P henolic Network Microcapsules. <i>Chemistry of Materials</i> , 2020 , 32, 6975-6982	9.6	14
39	Exploiting Supramolecular Dynamics in Metal-Phenolic Networks to Generate Metal-Oxide and Metal-Carbon Networks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14586-14594	16.4	14
38	Ricocheting Droplets Moving on Super-Repellent Surfaces. <i>Advanced Science</i> , 2019 , 6, 1901846	13.6	13
37	Thermal Transition of Bimetallic Metal-Phenolic Networks to Biomass-Derived Hierarchically Porous Nanofibers. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 972-976	4.5	13
36	The Biomolecular Corona in 2D and Reverse: Patterning Metal P henolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints. <i>Advanced Functional Materials</i> , 2020 , 30, 190580	0 5 5.6	13

(2021-2020)

35	Polyphenol-Mediated Assembly of Proteins for Engineering Functional Materials. <i>Angewandte Chemie</i> , 2020 , 132, 15748-15755	3.6	12
34	Immobilized Particle Imaging for Quantification of Nano- and Microparticles. <i>Langmuir</i> , 2016 , 32, 3532-	-4 Q	12
33	Expanding the Toolbox of Metal P henolic Networks via Enzyme-Mediated Assembly. <i>Angewandte Chemie</i> , 2020 , 132, 1728-1734	3.6	9
32	Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational Forces. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4499-4504	2.3	8
31	Unravelling "off-target" effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells. <i>Nanoscale</i> , 2015 , 7, 6261-70	7.7	8
30	Tuning particle biodegradation through polymer-peptide blend composition. <i>Biomacromolecules</i> , 2014 , 15, 4429-38	6.9	8
29	Multivalent directed assembly of colloidal particles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3314-6	16.4	7
28	Fluorinated Metal-Organic Coatings with Selective Wettability. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9972-9981	16.4	7
27	Programmable Phototaxis of Metal-Phenolic Particle Microswimmers. <i>Advanced Materials</i> , 2021 , 33, e2	.0 <u>0</u> 617	76
26	Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups <i>Nature Communications</i> , 2022 , 13, 1892	17.4	6
25	Preparation of Nano- and Microcapsules by Electrophoretic Polymer Assembly. <i>Angewandte Chemie</i> , 2013 , 125, 6583-6586	3.6	5
24	Metal B henolic Networks as Tunable Buffering Systems. <i>Chemistry of Materials</i> , 2021 , 33, 2557-2566	9.6	5
23	Modular Assembly of Host © uest Metal P henolic Networks Using Macrocyclic Building Blocks. <i>Angewandte Chemie</i> , 2020 , 132, 281-286	3.6	5
22	Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24968-24975	16.4	5
21	Oxidation-Mediated Kinetic Strategies for Engineering Metal P henolic Networks. <i>Angewandte Chemie</i> , 2019 , 131, 12693-12698	3.6	4
20	Exploiting Molecular Dynamics in Composite Coatings to Design Robust Super-Repellent Surfaces <i>Advanced Science</i> , 2022 , e2104331	13.6	4
19	Assembly of Bioactive Nanoparticles via Metal-Phenolic Complexation Advanced Materials, 2021, e210	08624	4
18	Exploiting Supramolecular Dynamics in Metal P henolic Networks to Generate Metal D xide and Metal D arbon Networks. <i>Angewandte Chemie</i> , 2021 , 133, 14707-14715	3.6	4

17	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20225-20230	16.4	4
16	Biofilms in plant-based fermented foods: Formation mechanisms, benefits and drawbacks on quality and safety, and functionalization strategies. <i>Trends in Food Science and Technology</i> , 2021 , 116, 940-953	15.3	4
15	Self-Assembly: Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin (Adv. Sci. 5/2019). <i>Advanced Science</i> , 2019 , 6, 1970028	13.6	2
14	Synthesis of Dithiocatechol-Pendant Polymers Journal of the American Chemical Society, 2022,	16.4	2
13	Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver <i>Scientific Reports</i> , 2022 , 12, 2071	4.9	2
12	Engineered Coatings via the Assembly of Amino-Quinone Networks. <i>Angewandte Chemie</i> , 2021 , 133, 2376-2384	3.6	2
11	Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization <i>Bioactive Materials</i> , 2022 , 16, 95-106	16.7	2
10	Benchmarking supramolecular adhesive behaviour of nanocelluloses, cellulose derivatives and proteins. <i>Carbohydrate Polymers</i> , 2022 , 119681	10.3	2
9	Metal-Phenolic Nanoparticles: Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer (Adv. Biosys. 2/2019). <i>Advanced Biology</i> , 2019 , 3, 1970022	3.5	1
8	Titelbild: Engineering Multifunctional Capsules through the Assembly of Metal P henolic Networks (Angew. Chem. 22/2014). <i>Angewandte Chemie</i> , 2014 , 126, 5579-5579	3.6	1
7	Multivalente gerichtete Organisation von kolloidalen Partikeln. Angewandte Chemie, 2013, 125, 3396-3	3 9.8	1
6	Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. <i>Biomacromolecules</i> , 2021 , 22, 612-619	6.9	1
5	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. <i>Angewandte Chemie</i> , 2021 , 133, 20387-20392	3.6	1
4	Polydopamine-Mediated Surface Functionalization of Exosomes. <i>ChemNanoMat</i> , 2021 , 7, 592-595	3.5	О
3	A pilot study investigating a novel particle-based growth factor delivery system for preimplantation embryo culture. <i>Human Reproduction</i> , 2021 , 36, 1776-1783	5.7	0
2	Biomedical Applications: Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1947-1947	24	
1	A Simple and Feasible Synthetic Strategy towards Poly(4-thiostyrene). <i>Macromolecular Chemistry and Physics</i> , 2200092	2.6	