Hui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733375/publications.pdf

Version: 2024-02-01

50 papers	2,056 citations	218677 26 h-index	42 g-index
53	53	53	2763 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3. PLoS ONE, 2013, 8, e69225.	2.5	161
2	Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy, 2019, 15, 1882-1898.	9.1	131
3	The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex. Nucleic Acids Research, 2018, 46, 350-361.	14.5	128
4	Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nature Cell Biology, 2019, 21, 991-1002.	10.3	121
5	Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2835-2843.	2.4	93
6	Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnology for Biofuels, 2017, 10, 153.	6.2	87
7	Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Frontiers in Microbiology, 2018, 9, 3250.	3.5	84
8	Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier. Artificial Intelligence in Medicine, 2019, 98, 35-47.	6.5	72
9	Microalgal biofuel revisited: An informatics-based analysis of developments to date and future prospects. Applied Energy, 2015, 155, 585-598.	10.1	71
10	Regulatory mechanisms of lipid biosynthesis in microalgae. Biological Reviews, 2021, 96, 2373-2391.	10.4	71
11	Ca2+ Signal Transduction Related to Neutral Lipid Synthesis in an Oil-Producing Green Alga Chlorella sp. C2. Plant and Cell Physiology, 2014, 55, 634-644.	3.1	70
12	Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection. Frontiers in Energy Research, 0, 2, .	2.3	66
13	Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Scientific Reports, 2015, 5, 15117.	3.3	58
14	Ten years of algal biofuel and bioproducts: gains and pains. Planta, 2019, 249, 195-219.	3.2	57
15	Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Applied Energy, 2018, 211, 296-305.	10.1	55
16	Microalgae-based nitrogen bioremediation. Algal Research, 2020, 46, 101775.	4.6	42
17	The molecular basis for lipase stereoselectivity. Applied Microbiology and Biotechnology, 2018, 102, 3487-3495.	3.6	41
18	Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga <i>Chlorella</i> sp. C2. Environmental Science & Environmental	10.0	40

#	Article	IF	CITATIONS
19	Evaluation of an Oil-Producing Green Alga <i>Chlorella</i> sp. C2 for Biological DeNO _{<i>x</i>} of Industrial Flue Gases. Environmental Science & Environmental S	10.0	35
20	Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE. Scientific Reports, 2017, 7, 44258.	3.3	34
21	Reconstitution of the <i>In Vitro</i> Activity of the Cyclosporine-Specific P450 Hydroxylase from Sebekia benihana and Development of a Heterologous Whole-Cell Biotransformation System. Applied and Environmental Microbiology, 2015, 81, 6268-6275.	3.1	33
22	The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. Journal of Plant Physiology, 2016, 195, 73-79.	3.5	33
23	Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation. Progress in Biophysics and Molecular Biology, 2020, 156, 3-13.	2.9	33
24	Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Research, 2021, 31, 1047-1060.	12.0	33
25	Dynamic Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp. PCC 6803. Molecular Plant, 2017, 10, 143-154.	8.3	32
26	Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2017, 8, 231.	3.5	32
27	Deep Sequencing-Based Identification of Small Regulatory RNAs in Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e92711.	2.5	28
28	An autoimmune disease variant of IgG1 modulates B cell activation and differentiation. Science, 2018, 362, 700-705.	12.6	28
29	Microalgal biofuels in China: The past, progress and prospects. GCB Bioenergy, 2020, 12, 1044-1065.	5.6	25
30	Low-Temperature Adaptation of the Snow Alga Chlamydomonas nivalis Is Associated With the Photosynthetic System Regulatory Process. Frontiers in Microbiology, 2020, 11, 1233.	3.5	25
31	The Acceptor Side of Photosystem II Is the Initial Target of Nitrite Stress in Synechocystis sp. Strain PCC 6803. Applied and Environmental Microbiology, 2017, 83, .	3.1	24
32	Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo. Journal of Plant Physiology, 2017, 211, 128-135.	3.5	23
33	An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas. Applied Microbiology and Biotechnology, 2016, 100, 2073-2082.	3.6	19
34	Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply. Frontiers in Microbiology, 2016, 7, 557.	3.5	18
35	Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp Bioresource Technology, 2021, 321, 124428.	9.6	18
36	Improving the Secretory Expression of an \hat{l}_{\pm} -Galactosidase from Aspergillus niger in Pichia pastoris. PLoS ONE, 2016, 11, e0161529.	2.5	15

#	Article	IF	CITATIONS
37	Thf1 interacts with PS I and stabilizes the PS I complex in <scp><i>S</i></scp> <i>ynechococcus</i> sp. PCC7942. Molecular Microbiology, 2016, 102, 738-751.	2.5	15
38	The Small Regulatory Antisense RNA PilR Affects Pilus Formation and Cell Motility by Negatively Regulating pilA11 in Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2018, 9, 786.	3. 5	15
39	Time-course effects of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on Chlorella pyrenoidosa: Growth inhibition and adaptability mechanisms. Journal of Hazardous Materials, 2021, 402, 123784.	12.4	15
40	Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2018, 141, 2168-2181.	2.9	14
41	Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Frontiers in Microbiology, 2021, 12, 774107.	3.5	9
42	Argonaute Facilitates the Lateral Diffusion of the Guide along Its Target and Prevents the Guide from Being Pushed Away by the Ribosome. Biochemistry, 2018, 57, 2179-2183.	2.5	8
43	Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii. Bioresource Technology, 2022, 348, 126746.	9.6	8
44	Development of MEMS directed evolution strategy for multiplied throughput and convergent evolution of cytochrome P450 enzymes. Science China Life Sciences, 2022, 65, 550-560.	4.9	6
45	Remarkable Natural Biological Resource of Algae for Medical Applications. Frontiers in Marine Science, 0, 9, .	2.5	6
46	Microalgae-Based Green Bio-Manufacturingâ€"How Far From Us. Frontiers in Microbiology, 2022, 13, 832097.	3.5	5
47	Distinct roles of alternative oxidase pathway during the greening process of etiolated algae. Science China Life Sciences, 2021, 64, 816-827.	4.9	4
48	Reprint of "Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation― Progress in Biophysics and Molecular Biology, 2021, 160, 5-15.	2.9	3
49	Small antisense RNA ThfR positively regulates Thf1 in Synechocystis sp. PCC 6803. Journal of Plant Physiology, 2022, 271, 153642.	3.5	2
50	A Novel Method for Non-invasive Estimation of Primary Productivity in Aquatic Ecosystems Using a Chlorophyll Fluorescence-Induced Dynamic Curve. Frontiers in Microbiology, 2021, 12, 682250.	3. 5	1