

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733283/publications.pdf Version: 2024-02-01

Сномс

#	Article	IF	CITATIONS
1	On three-dimensional SPH modelling of large-scale landslides. Canadian Geotechnical Journal, 2022, 59, 24-39.	1.4	19
2	Large deformation analysis of geomaterials using stabilized total Lagrangian smoothed particle hydrodynamics. Engineering Analysis With Boundary Elements, 2022, 136, 252-265.	2.0	11
3	A thermodynamically consistent phase field model for mixed-mode fracture in rock-like materials. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114642.	3.4	33
4	A mortar segment-to-segment contact method for stabilized total-Lagrangian smoothed particle hydrodynamics. Applied Mathematical Modelling, 2022, 107, 20-38.	2.2	25
5	A multi-layer SPH method for generic water–soil dynamic coupling problems. Part I: Revisit, theory, and validation. Computer Methods in Applied Mechanics and Engineering, 2022, 396, 115106.	3.4	16
6	Lagrangian meshfree particle method (SPH) based simulation for granular flow in a rotating drum with regularized μ(I) elastoplastic model. Powder Technology, 2022, 408, 117699.	2.1	3
7	GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics. Computers and Geotechnics, 2021, 129, 103856.	2.3	64
8	A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. Powder Technology, 2021, 377, 760-779.	2.1	23
9	Unified constitutive model for granular–fluid mixture in quasi-static and dense flow regimes. Acta Geotechnica, 2021, 16, 775-787.	2.9	13
10	A Eulerian–Lagrangian Coupled Method for the Simulation of Submerged Granular Column Collapse. Journal of Marine Science and Engineering, 2021, 9, 617.	1.2	3
11	A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. Powder Technology, 2021, 387, 509-526.	2.1	41
12	A Lagrangian differencing dynamics method for granular flow modeling. Computers and Geotechnics, 2021, 137, 104297.	2.3	10
13	Numerical modelling of interaction between aluminium structure and explosion in soil. Applied Mathematical Modelling, 2021, 99, 760-784.	2.2	5
14	Lagrangian Differencing Dynamics for Time-Independent Non-Newtonian Materials. Materials, 2021, 14, 6210.	1.3	3
15	Numerical Simulation of Detonation and Brisance Performance of Aluminized HMX Using Densityâ€Adaptive SPH. Propellants, Explosives, Pyrotechnics, 2021, 46, 1800-1814.	1.0	3
16	Granular flow simulation in a centrifugal acceleration field. Geotechnique, 2020, 70, 894-905.	2.2	12
17	GPU-accelerated smoothed particle hydrodynamics modeling of granular flow. Powder Technology, 2020, 359, 94-106.	2.1	21
18	GPU-accelerated smoothed particle hydrodynamics modeling of jet formation and penetration capability of shaped charges. Journal of Fluids and Structures, 2020, 99, 103171.	1.5	9

Сноис

#	Article	lF	CITATIONS
19	Role of baffle shape on debris flow impact in step-pool channel: an SPH study. Landslides, 2020, 17, 2099-2111.	2.7	32
20	Numerical simulation of metal machining process with Eulerian and Total Lagrangian SPH. Engineering Analysis With Boundary Elements, 2020, 117, 269-283.	2.0	13
21	A PCISPH implementation using distributed multi-GPU acceleration for simulating industrial engineering applications. International Journal of High Performance Computing Applications, 2020, 34, 450-464.	2.4	3
22	A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 1446-1471.	1.7	35
23	A three-field dual mortar method for elastic problems with nonconforming mesh. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112870.	3.4	13
24	An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling. Journal of Hydrodynamics, 2019, 31, 654-668.	1.3	17
25	Implementation of three-dimensional physical reflective boundary conditions in mesh-free particle methods for continuum fluid dynamics: Validation tests and case studies. Physics of Fluids, 2019, 31, 103606.	1.6	4
26	LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotechnica, 2019, 14, 1269-1287.	2.9	76
27	Three-dimensional modeling of granular flow impact on rigid and deformable structures. Computers and Geotechnics, 2019, 112, 257-271.	2.3	39
28	A Total Lagrangian SPH method for modelling damage and failure in solids. International Journal of Mechanical Sciences, 2019, 157-158, 498-511.	3.6	53
29	Investigation of Submerged Soil Excavation by High-Velocity Water Jet Using Two-Fluid Smoothed Particle Hydrodynamics Method. Journal of Hydraulic Engineering, 2019, 145, .	0.7	11
30	Simulations for the explosion in a water-filled tube including cavitation using the SPH method. Computational Particle Mechanics, 2019, 6, 515-527.	1.5	9
31	A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction. Journal of Fluids and Structures, 2019, 86, 329-353.	1.5	81
32	A dual mortar contact method for porous media and its application to clayâ€core rockfill dams. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 1744-1769.	1.7	12
33	Simulations for three-dimensional landmine detonation using the SPH method. International Journal of Impact Engineering, 2019, 126, 40-49.	2.4	15
34	Numerical evaluation of soft interâ€slab joint in concreteâ€faced rockfill dam with dual mortar finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 781-805.	1.7	18
35	Modelling the timeâ€dependent behaviour of granular material with hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42, 1331-1345.	1.7	31
36	Numerical integration and FE implementation of a hypoplastic constitutive model. Acta Geotechnica, 2018, 13, 1265-1281.	2.9	40

Снонс

#	Article	IF	CITATIONS
37	A GPU-Accelerated Three-Dimensional SPH Solver for Geotechnical Applications. Springer Series in Geomechanics and Geoengineering, 2018, , 398-401.	0.0	2
38	Combined constitutive model for creep and steady flow rate of frozen soil in an unconfined condition. Canadian Geotechnical Journal, 2017, 54, 907-914.	1.4	16
39	Large Deformation Modeling of Soil-Machine Interaction in Clay. Springer Series in Geomechanics and Geoengineering, 2017, , 249-257.	0.0	5
40	Experimental Study on Loading-Creep Coupling Effect in Rockfill Material. International Journal of Geomechanics, 2017, 17, .	1.3	28
41	Two-fluid smoothed particle hydrodynamics simulation of submerged granular column collapse. Mechanics Research Communications, 2017, 79, 15-23.	1.0	33
42	Dilatancy and compaction effects on the submerged granular column collapse. Physics of Fluids, 2017, 29, .	1.6	70
43	Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics, 2017, 81, 239-248.	2.3	71
44	Threeâ€dimensional numerical analysis of concreteâ€faced rockfill dam using dualâ€mortar finite element method with mixed tangential contact constraints. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40, 2100-2122.	1.7	35
45	Smoothed Particle Hydrodynamics Simulation of Water-Soil Mixture Flows. Journal of Hydraulic Engineering, 2016, 142, .	0.7	38
46	A hypoplastic constitutive model for debris materials. Acta Geotechnica, 2016, 11, 1217-1229.	2.9	29
47	Unified modelling of granular media with Smoothed Particle Hydrodynamics. Acta Geotechnica, 2016, 11, 1231-1247.	2.9	73
48	A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotechnica, 2015, 10, 703-717.	2.9	105
49	Threeâ€dimensional simulations of tensile cracks in geomaterials by coupling meshless and finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39, 135-154.	1.7	21
50	Simulation of tensile cracking in earth structures with an adaptive RPIM-FEM coupled Method. KSCE Journal of Civil Engineering, 2014, 18, 2007-2018.	0.9	9
51	Factors affecting accuracy of radial point interpolation meshfree method for 3-D solid mechanics. Journal of Central South University, 2013, 20, 3229-3246.	1.2	2