Francisco Murilo Zerbini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1733084/publications.pdf Version: 2024-02-01

	46984	30894
11,452	47	102
citations	h-index	g-index
151	151	8036
docs citations	times ranked	citing authors
	11,452 citations 151 docs citations	11,45247citationsh-index151151docs citations151times ranked

#	Article	IF	CITATIONS
1	ICTV Virus Taxonomy Profile: Geminiviridae. Journal of General Virology, 2017, 98, 131-133.	1.3	676
2	Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 2015, 160, 1593-1619.	0.9	664
3	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	13.6	590
4	Geminivirus strain demarcation and nomenclature. Archives of Virology, 2008, 153, 783-821.	0.9	585
5	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Archives of Virology, 2018, 163, 2601-2631.	0.9	567
6	Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology, 2017, 162, 2505-2538.	0.9	506
7	ICTV Virus Taxonomy Profile: Potyviridae. Journal of General Virology, 2017, 98, 352-354.	1.3	416
8	Global Organization and Proposed Megataxonomy of the Virus World. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	378
9	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	0.9	285
10	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 2016, 161, 2921-2949.	0.9	263
11	Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164, 2417-2429.	0.9	257
12	World Management of Geminiviruses. Annual Review of Phytopathology, 2018, 56, 637-677.	3.5	247
13	Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Archives of Virology, 2017, 162, 1819-1831.	0.9	240
14	Capsid Protein and Helper Component-Proteinase Function as Potyvirus Cell-to-Cell Movement Proteins. Virology, 1997, 237, 283-295.	1.1	226
15	Recommendations for the classification and nomenclature of the DNA-Î ² satellites of begomoviruses. Archives of Virology, 2008, 153, 763-781.	0.9	226
16	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	0.9	224
17	Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 2021, 166, 2633-2648.	0.9	219
18	Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Archives of Virology, 2014, 159, 2193-2203.	0.9	218

#	Article	IF	CITATIONS
19	A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 2013, 158, 1411-1424.	0.9	216
20	Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Archives of Virology, 2020, 165, 2737-2748.	0.9	202
21	The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 2020, 5, 668-674.	5.9	198
22	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
23	Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil *. Archives of Virology, 2003, 148, 281-295.	0.9	143
24	Characterization of a New World Monopartite Begomovirus Causing Leaf Curl Disease of Tomato in Ecuador and Peru Reveals a New Direction in Geminivirus Evolution. Journal of Virology, 2013, 87, 5397-5413.	1.5	142
25	Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology, 2018, 163, 2587-2600.	0.9	133
26	<i>Cressdnaviricota</i> : a Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Single-Stranded, Circular DNA Genomes. Journal of Virology, 2020, 94, .	1.5	118
27	Brazilian Begomovirus Populations Are Highly Recombinant, Rapidly Evolving, and Segregated Based on Geographical Location. Journal of Virology, 2013, 87, 5784-5799.	1.5	115
28	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	0.9	115
29	Six novel begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Archives of Virology, 2008, 153, 1985-1989.	0.9	108
30	Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Archives of Virology, 2019, 164, 943-946.	0.9	102
31	Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annual Review of Virology, 2019, 6, 411-433.	3.0	102
32	ICTV Virus Taxonomy Profile: Geminiviridae 2021. Journal of General Virology, 2021, 102, .	1.3	97
33	The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evolution, 2017, 3, vex005.	2.2	92
34	Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Archives of Virology, 2014, 159, 1873-1882.	0.9	89
35	A PERK-Like Receptor Kinase Interacts with the Geminivirus Nuclear Shuttle Protein and Potentiates Viral Infection. Journal of Virology, 2006, 80, 6648-6656.	1.5	84
36	Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. Journal of General Virology, 2013, 94, 418-431.	1.3	81

#	Article	IF	CITATIONS
37	Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease. Archives of Virology, 2006, 151, 1797-1809.	0.9	79
38	50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Archives of Virology, 2017, 162, 1441-1446.	0.9	72
39	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	0.9	70
40	A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. Journal of General Virology, 2003, 84, 715-726.	1.3	62
41	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
42	Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. Journal of General Virology, 2017, 98, 1552-1562.	1.3	62
43	Tomato yellow spot virus, a tomato-infecting begomovirus from Brazil with a closer relationship to viruses from Sida sp., forms pseudorecombinants with begomoviruses from tomato but not from Sida. Journal of General Virology, 2006, 87, 3687-3696.	1.3	60
44	Species diversity, phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in northeastern Brazil. Plant Pathology, 2012, 61, 457-467.	1.2	60
45	Biological and molecular properties of Tomato rugose mosaic virus (ToRMV), a new tomato-infecting begomovirus from Brazil. Plant Pathology, 2006, 55, 513-522.	1.2	55
46	Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virology Journal, 2014, 11, 66.	1.4	52
47	Binomial nomenclature for virus species: a consultation. Archives of Virology, 2020, 165, 519-525.	0.9	51
48	Molecular and Biological Characterization of Lettuce mosaic virus (LMV) Isolates Reveals a Distinct and Widespread Type of Resistance-Breaking Isolate: LMV-Most. Phytopathology, 2002, 92, 563-572.	1.1	49
49	A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. Plant Journal, 2008, 55, 869-880.	2.8	49
50	Genetic diversity of begomovirus infecting tomato and associated weeds in Southeastern Brazil. Tropical Plant Pathology, 2002, 27, 372-377.	0.3	47
51	Genome-Wide Analysis of Differentially Expressed Genes During the Early Stages of Tomato Infection by a Potyvirus. Molecular Plant-Microbe Interactions, 2009, 22, 352-361.	1.4	45
52	Purification and some properties of Papaya meleira virus, a novel virus infecting papayas in Brazil. Plant Pathology, 2003, 52, 389-394.	1.2	43
53	Sustained <scp>NIK</scp> â€mediated antiviral signalling confers broadâ€spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnology Journal, 2015, 13, 1300-1311.	4.1	43
54	Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus. Archives of Virology, 2022, 167, 695-710.	0.9	43

#	Article	IF	CITATIONS
55	Synergism and negative interference during co-infection of tomato and Nicotiana benthamiana with two bipartite begomoviruses. Virology, 2009, 387, 257-266.	1.1	41
56	The ever increasing diversity of begomoviruses infecting nonâ€cultivated hosts: new species from <i>Sida</i> spp. and <i>Leonurus sibiricus</i> , plus two New World alphasatellites. Annals of Applied Biology, 2017, 170, 204-218.	1.3	40
57	The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease. PLoS ONE, 2016, 11, e0155240.	1.1	38
58	Three distinct begomoviruses associated with soybean in central Brazil. Archives of Virology, 2009, 154, 1567-1570.	0.9	36
59	Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. Journal of General Virology, 2014, 95, 2540-2552.	1.3	36
60	Molecular mapping of the viral determinants of systemic wilting induced by a Lettuce mosaic virus (LMV) isolate in some lettuce cultivars. Virus Research, 2005, 109, 175-180.	1.1	35
61	A novel, highly divergent ssDNA virus identified in Brazil infecting apple, pear and grapevine. Virus Research, 2015, 210, 27-33.	1.1	34
62	Small but mighty: Functional landscape of the versatile geminivirus-encoded C4 protein. PLoS Pathogens, 2021, 17, e1009915.	2.1	34
63	Biological and Molecular Characterization of Lettuce Mosaic Potyvirus Isolates from the Salinas Valley of California. Phytopathology, 1995, 85, 746.	1.1	33
64	Differentiating between viruses and virus species by writing their names correctly. Archives of Virology, 2022, 167, 1231-1234.	0.9	33
65	High genetic variability and recombination in a begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern Brazil. Archives of Virology, 2011, 156, 2205-2213.	0.9	32
66	Transgenic passionfruit expressing RNA derived from Cowpea aphid-borne mosaic virus is resistant to passionfruit woodiness disease. Tropical Plant Pathology, 2005, 30, 33-38.	0.3	30
67	A novel mycovirus associated to Alternaria alternata comprises a distinct lineage in Partitiviridae. Virus Research, 2018, 244, 21-26.	1.1	30
68	Molecular characterisation and relative incidence of bean- and soybean-infecting begomoviruses in northwestern Argentina. Annals of Applied Biology, 2011, 158, 69-78.	1.3	29
69	Molecular and biological characterization of <i><scp>C</scp>owpea mild mottle virus</i> isolates infecting soybean in <scp>B</scp> razil and evidence of recombination. Plant Pathology, 2014, 63, 456-465.	1.2	29
70	Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus Tomato chlorotic mottle virus. Virus Research, 2007, 126, 262-267.	1.1	27
71	Molecular variability of cowpea mild mottle virus infecting soybean in Brazil. Archives of Virology, 2014, 159, 727-737.	0.9	26
72	Geminivirus data warehouse: a database enriched with machine learning approaches. BMC Bioinformatics, 2017, 18, 240.	1.2	26

#	Article	IF	CITATIONS
73	NSP-Interacting GTPase. Plant Signaling and Behavior, 2008, 3, 752-754.	1.2	25
74	Molecular and biological characterization of a new Brazilian begomovirus, euphorbia yellow mosaic virus (EuYMV), infecting Euphorbia heterophylla plants. Archives of Virology, 2011, 156, 2063-2069.	0.9	23
75	Translationally controlled tumour protein (TCTP) from tomato and <i>Nicotiana benthamiana</i> is necessary for successful infection by a potyvirus. Molecular Plant Pathology, 2017, 18, 672-683.	2.0	23
76	A naturally occurring recombinant isolate of Lettuce mosaic virus. Archives of Virology, 2003, 149, 191-197.	0.9	22
77	Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts. Archives of Virology, 2011, 156, 1085-1091.	0.9	22
78	Further molecular characterization of weed-associated begomoviruses in Brazil with an emphasis on Sida spp. Planta Daninha, 2012, 30, 305-315.	0.5	22
79	Characterization of Tomato yellow spot virus, a novel tomato-infecting begomovirus in Brazil. Pesquisa Agropecuaria Brasileira, 2007, 42, 1335-1343.	0.9	21
80	Identificação dos genes Ty-2 e Ty-3 de resistência a begomovÃŧusem genótipos de tomateiro. Pesquisa Agropecuaria Brasileira, 2011, 46, 772-775.	0.9	21
81	Análise filogenética de potyvÃrus causando endurecimento dos frutos do maracujazeiro no Nordeste do Brasil. Tropical Plant Pathology, 2004, 29, 378-383.	0.3	20
82	Caracterização molecular de dois isolados brasileiros de Lettuce mosaic virus apresentando propriedades biológicas distintas. Tropical Plant Pathology, 2001, 26, 153-157.	0.3	19
83	Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. Journal of General Virology, 2017, 98, 1537-1551.	1.3	19
84	A mosaic of beach bean (Canavalia rosea) caused by an isolate of Cowpea aphid-borne mosaic virus (CABMV) in Brazil. Archives of Virology, 2008, 153, 743-747.	0.9	18
85	Sources of resistance against the Pepper yellow mosaic virus in chili pepper. Horticultura Brasileira, 2009, 27, 196-201.	0.1	18
86	Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato. Archives of Virology, 2014, 159, 2127-2132.	0.9	18
87	Characterization of Passionfruit severe leaf distortion virus, a novel begomovirus infecting passionfruit in Brazil, reveals a close relationship with tomatoâ€infecting begomoviruses. Plant Pathology, 2010, 59, 221-230.	1.2	17
88	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	2.7	17
89	Identidade e propriedades de isolados de potyvÃrus provenientes de Capsicum spp Tropical Plant Pathology, 2004, 29, 160-168.	0.3	17
90	Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Molecular Ecology, 2021, 30, 3747-3767.	2.0	16

#	Article	IF	CITATIONS
91	Evidence for a complex of emergent poleroviruses affecting pepper worldwide. Archives of Virology, 2018, 163, 1171-1178.	0.9	15
92	Taxonomy update for the family Alphasatellitidae: new subfamily, genera, and species. Archives of Virology, 2021, 166, 3503-3511.	0.9	15
93	Traditional and novel strategies for geminivirus management in Brazil. Australasian Plant Pathology, 2005, 34, 475.	0.5	14
94	Analysis of the full-length genome sequence of papaya lethal yellowing virus (PLYV), determined by deep sequencing, confirms its classification in the genus Sobemovirus. Archives of Virology, 2012, 157, 2009-2011.	0.9	14
95	Complete nucleotide sequences of two new begomoviruses infecting the wild malvaceous plant Melochia sp. in Brazil. Archives of Virology, 2015, 160, 3161-3164.	0.9	14
96	Two new begomoviruses infecting tomato and Hibiscus sp. in the Amazon region of Brazil. Archives of Virology, 2019, 164, 1897-1901.	0.9	14
97	Identification and Characterization of Two Novel Geminiviruses Associated with Paper Mulberry (<i>Broussonetia papyrifera</i>) Leaf Curl Disease. Plant Disease, 2020, 104, 3010-3018.	0.7	14
98	Expression of Grapevine leafroll-associated virus 3 coat protein gene in Escherichia coli and production of polyclonal antibodies. Tropical Plant Pathology, 2007, 32, 496-500.	0.3	13
99	Genetic structure of a Brazilian population of the begomovirus Tomato severe rugose virus (ToSRV). Tropical Plant Pathology, 2012, 37, 346-353.	0.8	13
100	Occurrence of a new recombinant begomovirus species infecting tomato in the <scp>A</scp> lâ€ <scp>B</scp> atinah region of <scp>O</scp> man. Plant Pathology, 2014, 63, 1177-1184.	1.2	12
101	Novel begomoviruses recovered from Pavonia sp. in Brazil. Archives of Virology, 2016, 161, 735-739.	0.9	11
102	Strengthening the Interaction of the Virology Community with the International Committee on Taxonomy of Viruses (ICTV) by Linking Virus Names and Their Abbreviations to Virus Species. Systematic Biology, 2019, 68, 828-839.	2.7	11
103	New approach for the construction of infectious clones of a circular DNA plant virus using Gibson Assembly. Journal of Virological Methods, 2019, 263, 20-23.	1.0	11
104	Gazania spp.: A New Host of Lettuce Mosaic Potyvirus, and a Potential Inoculum Source for Recent Lettuce Mosaic Outbreaks in the Salinas Valley of California. Plant Disease, 1997, 81, 641-646.	0.7	10
105	Specific detection of Lettuce mosaic virus isolates belonging to the "Most―type. Journal of Virological Methods, 2004, 121, 119-124.	1.0	10
106	Screening of Lycopersicon sp. accessions for resistance to Pepper yellow mosaic virus. Scientia Agricola, 2006, 63, 510-512.	0.6	10
107	Genetic diversity of begomoviruses infecting soybean, bean and associated weeds in Northwestern Argentina. Tropical Plant Pathology, 2006, 31, 342-348.	0.3	9
108	Diversidade genética de begomovÃrus em cultivos de tomateiro no Centro-Oeste Paulista. Summa Phytopathologica, 2007, 33, 300-303.	0.3	9

#	Article	IF	CITATIONS
109	Base genética da resistência de um acesso de tomate silvestre ao mosaico-amarelo do pimentão. Pesquisa Agropecuaria Brasileira, 2008, 43, 713-720.	0.9	9
110	Production of polyclonal antiserum against Cowpea mild mottle virus coat protein and its application in virus detection. Tropical Plant Pathology, 2013, 38, 49-54.	0.8	9
111	Further characterization of two sequiviruses infecting lettuce and development of specific RT-PCR primers. Archives of Virology, 2007, 152, 999-1007.	0.9	8
112	Complete genome sequences of two gemycircularviruses associated with non-cultivated plants in Brazil. Archives of Virology, 2018, 163, 3163-3166.	0.9	8
113	Genetic variability of papaya lethal yellowing virus isolates from CearÃ; and Rio Grande do Norte States, Brazil. Tropical Plant Pathology, 2012, 37, 37-43.	0.8	8
114	Expressão em Escherichia coli da proteÃna capsidial do Watermelon mosaic virus e produção de anti-soro. Tropical Plant Pathology, 2004, 29, 215-219.	0.3	7
115	Variabilidade genética de isolados de badnavÃrus infectando inhame (Dioscorea spp.) no nordeste do Brasil. Tropical Plant Pathology, 2013, 38, 349-353.	0.8	7
116	Revealing the Complexity of Sweepovirus-Deltasatellite–Plant Host Interactions: Expanded Natural and Experimental Helper Virus Range and Effect Dependence on Virus-Host Combination. Microorganisms, 2021, 9, 1018.	1.6	7
117	Partial genome sequence of a Potyvirus and of a virus in the order Tymovirales found in Senna macranthera in Brazil. Tropical Plant Pathology, 2011, 36, 116-120.	0.8	6
118	Genetic variability of badnaviruses infecting yam (Dioscorea spp.) in northeastern Brazil. Tropical Plant Pathology, 2015, 40, 111-118.	0.8	6
119	Complete nucleotide sequence of a new begomovirus infecting a malvaceous weed in Brazil. Archives of Virology, 2016, 161, 1735-1738.	0.9	6
120	Two new begomoviruses that infect non-cultivated malvaceae in Brazil. Archives of Virology, 2017, 162, 1795-1797.	0.9	6
121	Complete genome sequence of a new bipartite begomovirus infecting Macroptilium lathyroides in Brazil. Archives of Virology, 2017, 162, 3551-3554.	0.9	6
122	First report of <i>Tobacco leaf curl Cuba virus</i> infecting common bean in Cuba. New Disease Reports, 2016, 33, 17-17.	0.4	6
123	Caracterização de um isolado do Bean rugose mosaic virus (BRMV) de Minas Gerais e estimativa de perdas em feijoeiro em infecção simples ou em conjunto com o BCMV. Tropical Plant Pathology, 2006, 31, 455-461.	0.3	5
124	Intra-host evolution of the ssDNA virus tomato severe rugose virus (ToSRV). Virus Research, 2021, 292, 198234.	1.1	5
125	Reação de acessos de Cucurbita sp. ao Zucchini yellow mosaic virus (ZYMV). Horticultura Brasileira, 2005, 23, 206-210.	0.1	5
126	Speciation driven by recombination in the evolution of tomato curly stunt virus in Mozambique. Plant Pathology, 2021, 70, 994-1002.	1.2	4

#	Article	IF	CITATIONS
127	The Association between New World Alphasatellites and Bipartite Begomoviruses: Effects on Infection and Vector Transmission. Pathogens, 2021, 10, 1244.	1.2	4
128	Molecular detection of Euphorbia yellow mosaic virus infecting chili pepper. Tropical Plant Pathology, 2020, 45, 454-460.	0.8	3
129	Tomato rugose mosaic virus in Tomato Crops in São Paulo State, Brazil. Tropical Plant Pathology, 2006, 31, 606-606.	0.3	3
130	Screening of papaya accessions resistant to Papaya lethal yellowing virus and capacity of Tetranychus urticae to transmit the virus. Pesquisa Agropecuaria Brasileira, 2015, 50, 97-105.	0.9	2
131	Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Research, 2021, 303, 198389.	1.1	2
132	Transgenic Plants. , 2014, , 179-199.		1
133	Response of tomato (Solanum L. section Lycopersicon Mill.) germplasm to begomovirus inoculation under controlled and field conditions. Genetic Resources and Crop Evolution, 2014, 61, 435-450.	0.8	1
134	First report of â€~Candidatus Phytoplasma asteris' associated with napier grass in Cuba. Journal of Plant Pathology, 2018, 100, 603-603.	0.6	1
135	First complete genome sequence of an isolate of cowpea severe mosaic virus from South America. Virus Genes, 2021, 57, 238-241.	0.7	1
136	Malvaviscus yellow mosaic virus, a divergent begomovirus carrying a nanovirusâ€like nonanucleotide and a modified stemâ€loop structure. Annals of Applied Biology, 2021, 179, 96-107.	1.3	0
137	Complete genome sequence of a recombinant isolate of yambean mosaic virus from Canavalia ensiformis. Virus Genes, 2021, 57, 561-564.	0.7	0
138	High molecular diversity and divergent subpopulations of the begomovirus cnidoscolus mosaic leaf deformation virus associated with Cnidoscolus urens. Archives of Virology, 2021, 166, 3289-3299.	0.9	0
139	Efeitos na fotossÃntese e área foliar de cultivares de alface inoculadas mecanicamente com patótipos do Lettuce mosaic virus e Lettuce mottle virus. Tropical Plant Pathology, 2004, 29, 7-11.	0.3	0
140	Quantitative control of Lettuce mosaic virus fitness and host defence inhibition by P1-HCPro. Summa Phytopathologica, 2007, 33, 119-123.	0.3	0
141	Begomoviruses: Molecular Cloning and Identification of Replication Origin. Methods in Molecular Biology, 2008, 451, 145-166.	0.4	0
142	A new bipartite begomovirus naturally infecting Pyrenacantha sp. in Mozambique. Archives of Virology, 2021, , 1.	0.9	0