Stephen A Coombes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1732838/publications.pdf

Version: 2024-02-01

186209 254106 2,038 59 28 43 citations g-index h-index papers 60 60 60 2399 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emotion and motor preparation: A transcranial magnetic stimulation study of corticospinal motor tract excitability. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 380-388.	1.0	101
2	A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI. Cerebral Cortex, 2018, 28, 1685-1699.	1.6	101
3	Force control and degree of motor impairments in chronic stroke. Clinical Neurophysiology, 2010, 121, 1952-1961.	0.7	96
4	Attentional control theory: Anxiety, emotion, and motor planning. Journal of Anxiety Disorders, 2009, 23, 1072-1079.	1.5	89
5	Emotion and movement: Activation of defensive circuitry alters the magnitude of a sustained muscle contraction. Neuroscience Letters, 2006, 396, 192-196.	1.0	80
6	Neuroimaging Evidence of Motor Control and Pain Processing in the Human Midcingulate Cortex. Cerebral Cortex, 2015, 25, 1906-1919.	1.6	79
7	Emotion and Motor Control: Movement Attributes Following Affective Picture Processing. Journal of Motor Behavior, 2005, 37, 425-436.	0.5	75
8	Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study. The Lancet Digital Health, 2019, 1, e222-e231.	5.9	73
9	Force control deficits in chronic stroke: grip formation and release phases. Experimental Brain Research, 2011, 211, 1-15.	0.7	71
10	A widespread visually-sensitive functional network relates to symptoms in essential tremor. Brain, 2018, 141, 472-485.	3.7	71
11	Neurite orientation dispersion and density imaging (NODDI) and freeâ€water imaging in Parkinsonism. Human Brain Mapping, 2019, 40, 5094-5107.	1.9	71
12	Selective Regions of the Visuomotor System Are Related to Gain-Induced Changes in Force Error. Journal of Neurophysiology, 2010, 103, 2114-2123.	0.9	69
13	Pain and motor processing in the human cerebellum. Pain, 2016, 157, 117-127.	2.0	62
14	Emotional state and initiating cue alter central and peripheral motor processes Emotion, 2007, 7, 275-284.	1.5	60
15	Bimanual isometric force control: Asymmetry and coordination evidence post stroke. Clinical Neurophysiology, 2012, 123, 787-795.	0.7	60
16	Automated classification of pain perception using high-density electroencephalography data. Journal of Neurophysiology, 2017, 117, 786-795.	0.9	60
17	Emotional state affects the initiation of forward gait Emotion, 2011, 11, 267-277.	1.5	59
18	Emotional states alter force control during a feedback occluded motor task Emotion, 2008, 8, 104-113.	1.5	49

#	Article	IF	CITATIONS
19	Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms. Human Brain Mapping, 2017, 38, 4563-4573.	1.9	49
20	Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz. PLoS ONE, 2013, 8, e83468.	1.1	43
21	Dissociating Motivational Direction and Affective Valence. Psychological Science, 2007, 18, 938-942.	1.8	42
22	Spatiotemporal tuning of brain activity and force performance. Neurolmage, 2011, 54, 2226-2236.	2.1	42
23	Bimanual force control strategies in chronic stroke: Finger extension versus power grip. Neuropsychologia, 2012, 50, 2536-2545.	0.7	38
24	Maintaining Force Control Despite Changes in Emotional Context Engages Dorsomedial Prefrontal and Premotor Cortex. Cerebral Cortex, 2012, 22, 616-627.	1.6	37
25	Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia. NeuroImage: Clinical, 2018, 19, 559-571.	1.4	37
26	3D Cortical electrophysiology of ballistic upper limb movement in humans. NeuroImage, 2015, 115, 30-41.	2.1	33
27	Visual feedback alters force control and functional activity in the visuomotor network after stroke. Neurolmage: Clinical, 2018, 17, 505-517.	1.4	33
28	Viewing red prior to a strength test inhibits motor output. Neuroscience Letters, 2011, 495, 44-48.	1.0	30
29	Development of a transcallosal tractography template and its application to dementia. NeuroImage, 2019, 200, 302-312.	2.1	28
30	Where's the Emotion? How Sport Psychology Can Inform Research on Emotion in Human Factors. Human Factors, 2011, 53, 180-202.	2.1	27
31	Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement. Cerebral Cortex, 2016, 27, bhw061.	1.6	20
32	Dose-Response Effect of Isometric Force Production on the Perception of Pain. PLoS ONE, 2014, 9, e88105.	1.1	19
33	Altered neural oscillations within and between sensorimotor cortex and parietal cortex in chronic jaw pain. Neurolmage: Clinical, 2019, 24, 101964.	1.4	18
34	Cortical dynamics within and between parietal and motor cortex in essential tremor. Movement Disorders, 2019, 34, 95-104.	2.2	18
35	Effects of a Force Production Task and a Working Memory Task onÂPain Perception. Journal of Pain, 2013, 14, 1492-1501.	0.7	17
36	Free-water and free-water corrected fractional anisotropy in primary and premotor corticospinal tracts in chronic stroke. Human Brain Mapping, 2017, 38, 4546-4562.	1.9	16

3

#	Article	IF	CITATIONS
37	Microstructural properties of premotor pathways predict visuomotor performance in chronic stroke. Human Brain Mapping, 2016, 37, 2039-2054.	1.9	15
38	Visuomotor brain network activation and functional connectivity among individuals with autism spectrum disorder. Human Brain Mapping, 2022, 43, 844-859.	1.9	14
39	Cortical dynamics of movementâ€evoked pain in chronic low back pain. Journal of Physiology, 2021, 599, 289-305.	1.3	13
40	Influence of Emotion on the Control of Low-Level Force Production. Research Quarterly for Exercise and Sport, 2012, 83, 353-358.	0.8	12
41	Association of Cognitive Impairment With Free Water in the Nucleus Basalis of Meynert and Locus Coeruleus to Transentorhinal Cortex Tract. Neurology, 2022, 98, .	1.5	12
42	Advanced diffusion imaging to track progression in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. NeuroImage: Clinical, 2022, 34, 103022.	1.4	12
43	Motor-Evoked Pain Increases Force Variability in Chronic Jaw Pain. Journal of Pain, 2018, 19, 636-648.	0.7	11
44	A Novel Method to Understand Neural Oscillations During Full-Body Reaching: A Combined EEG and 3D Virtual Reality Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3074-3082.	2.7	11
45	Subclinical depression modulates the impact of emotion on force control. Motivation and Emotion, 2010, 34, 432-445.	0.8	10
46	Emotional reactivity and force control: The influence of behavioral inhibition. Human Movement Science, 2011, 30, 1052-1061.	0.6	9
47	Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error. Journal of Neurophysiology, 2013, 109, 2205-2215.	0.9	8
48	Functional brain activity during motor control and pain processing in chronic jaw pain. Pain, 2018, 159, 2547-2564.	2.0	7
49	Functional imaging of the brainstem during visually-guided motor control reveals visuomotor regions in the pons and midbrain. Neurolmage, 2021, 226, 117627.	2.1	6
50	Chronic stroke and aging: The impact of acoustic stimulus intensity on fractionated reaction time. Neuroscience Letters, 2009, 452, 151-155.	1.0	5
51	Empirically derived back pain subgroups differentiated walking performance, pain, and disability. Pain, 2021, 162, 1806-1815.	2.0	5
52	Reply: Visually-sensitive networks in essential tremor: evidence from structural and functional imaging. Brain, 2018, 141, e48-e48.	3.7	3
53	Neurophysiological evidence of the dynamic and adaptive painâ€motor interaction. Journal of Physiology, 2018, 596, 2639-2640.	1.3	3
54	Pain differences in neurite orientation dispersion and density imaging measures among community-dwelling older adults. Experimental Gerontology, 2021, 154, 111520.	1.2	3

STEPHEN A COOMBES

#	Article	IF	CITATIONS
55	Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations. Neurolmage, 2021, 245, 118710.	2.1	2
56	Chronic jaw pain attenuates neural oscillations during motor-evoked pain. Brain Research, 2020, 1748, 147085.	1.1	1
57	Recalling fearful memories modifies approach and avoidance behavior based on spatial context Emotion, 2022, 22, 430-443.	1.5	1
58	The Motion of Emotion. Advances in Human Factors and Ergonomics Series, 2010, , 276-283.	0.2	1
59	Low Risk for Persistent Back Pain Disability Is Characterized by Lower Pain Sensitivity and Higher Physical Performance. Physical Therapy, 2022, 102, .	1.1	0