Robert Ford Denison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1732619/publications.pdf

Version: 2024-02-01

65 papers

4,926 citations

32 h-index 59 g-index

66 all docs 66 docs citations

66 times ranked 4569 citing authors

#	Article	IF	CITATIONS
1	Host sanctions and the legume–rhizobium mutualism. Nature, 2003, 425, 78-81.	27.8	838
2	Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia. American Naturalist, 2000, 156, 567-576.	2.1	325
3	Sanctions and mutualism stability: why do rhizobia fix nitrogen?. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 685-694.	2.6	292
4	Sanctions, Cooperation, and the Stability of Plant-Rhizosphere Mutualisms. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 215-236.	8.3	274
5	Applying evolutionary biology to address global challenges. Science, 2014, 346, 1245993.	12.6	228
6	Human selection and the relaxation of legume defences against ineffective rhizobia. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3119-3126.	2.6	179
7	Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agroâ€ecosystems. Evolutionary Applications, 2011, 4, 200-215.	3.1	177
8	Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiology Letters, 2004, 237, 187-193.	1.8	168
9	Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi. Current Biology, 2011, 21, R775-R785.	3.9	162
10	Darwinian Agriculture: When Can Humans Find Solutions Beyond The Reach of Natural Selection?. Quarterly Review of Biology, 2003, 78, 145-168.	0.1	161
11	Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2698-2703.	2.6	128
12	Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiology Ecology, 2008, 65, 391-399.	2.7	123
13	Involvement of Ureides in Nitrogen Fixation Inhibition in Soybean 1. Plant Physiology, 1999, 119, 289-296.	4.8	117
14	Controlling the reproductive fate of rhizobia: how universal are legume sanctions?. New Phytologist, 2009, 183, 967-979.	7.3	108
15	Comparing Symbiotic Efficiency between Swollen versus Nonswollen Rhizobial Bacteroids. Plant Physiology, 2010, 154, 1541-1548.	4.8	108
16	Do plant parts compete for resources? An evolutionary viewpoint. New Phytologist, 2009, 183, 565-574.	7.3	102
17	Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytologist, 2010, 187, 508-520.	7.3	92
18	Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. Journal of Applied Ecology, 2002, 39, 745-754.	4.0	89

#	Article	IF	CITATIONS
19	Individual-Level Bet Hedging in the Bacterium Sinorhizobium meliloti. Current Biology, 2010, 20, 1740-1744.	3.9	77
20	Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiology Letters, 2004, 237, 187-193.	1.8	76
21	Why are most rhizobia beneficial to their plant hosts, rather than parasitic?. Microbes and Infection, 2004, 6, 1235-1239.	1.9	75
22	Nitrogenase Activity, Nodule Respiration, and O2 Permeability Following Detopping of Alfalfa and Birdsfoot Trefoil. Plant Physiology, 1992, 98, 894-900.	4.8	71
23	COOPERATION IN THE RHIZOSPHERE AND THE "FREE RIDER―PROBLEM. Ecology, 2003, 84, 838-845.	3.2	71
24	Wheat Yields, Nitrogen Uptake, and Soil Moisture Following Winter Legume Cover Crop vs. Fallow. Agronomy Journal, 1998, 90, 404-410.	1.8	57
25	Measurement of Legume Nodule Respiration and O ₂ Permeability by Noninvasive Spectrophotometry of Leghemoglobin. Plant Physiology, 1991, 96, 137-143.	4.8	54
26	Alternative Actions for Antibiotics. Science, 2011, 332, 547-548.	12.6	54
27	Truncated Hemoglobins in Actinorhizal Nodules of <i>Datisca glomerata</i> . Plant Biology, 2007, 9, 776-785.	3.8	49
28	Mathematical Modeling of Oxygen Diffusion and Respiration in Legume Root Nodules. Plant Physiology, 1992, 98, 901-907.	4.8	43
29	Rhizobitoxine producers gain more poly-3-hydroxybutyrate in symbiosis than do competing rhizobia, but reduce plant growth. ISME Journal, 2009, 3, 870-872.	9.8	40
30	Singleâ€strain inoculation may create spurious correlations between legume fitness and rhizobial fitness. New Phytologist, 2013, 198, 4-6.	7.3	40
31	Neither crop genetics nor crop management can be optimised. Field Crops Research, 2016, 189, 75-83.	5.1	40
32	Evolutionary tradeoffs as opportunities to improve yield potential. Field Crops Research, 2015, 182, 3-8.	5.1	36
33	Making science more effective for agriculture. Advances in Agronomy, 2020, , 153-177.	5.2	34
34	Measuring the fitness of symbiotic rhizobia. Symbiosis, 2011, 55, 85-90.	2.3	33
35	The biological reality of host sanctions and partner fidelity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E7; author reply E8.	7.1	28
36	The century experiment: the first twenty years of <scp>UC</scp> Davis' Mediterranean agroecological experiment. Ecology, 2018, 99, 503-503.	3.2	28

#	Article	IF	CITATIONS
37	DO TRADE-OFFS HAVE EXPLANATORY POWER FOR THE EVOLUTION OF ORGANISMAL INTERACTIONS?. Evolution; International Journal of Organic Evolution, 2012, 66, 1297-1307.	2.3	27
38	Reversible O2 Inhibition of Nitrogenase Activity in Attached Soybean Nodules. Plant Physiology, 1992, 100, 1863-1868.	4.8	25
39	Bacterial persistence and bet hedging inSinorhizobium meliloti. Communicative and Integrative Biology, 2011, 4, 98-100.	1.4	20
40	Past evolutionary tradeoffs represent opportunities for crop genetic improvement and increased human lifespan. Evolutionary Applications, 2011, 4, 216-224.	3.1	19
41	Model predictions of winter rainfall effects on N dynamics of winter wheat rotation following legume cover crop or fallow. Field Crops Research, 2005, 91, 251-261.	5.1	17
42	Inclusive fitness in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130367.	4.0	17
43	What should agriculture copy from natural ecosystems?. Global Food Security, 2015, 4, 30-36.	8.1	17
44	How do lessâ€expensive nitrogen alternatives affect legume sanctions on rhizobia?. Ecology and Evolution, 2020, 10, 10645-10656.	1.9	16
45	Strong Inference: The Way of Science. American Biology Teacher, 2003, 65, 419-424.	0.2	14
46	Individual fitness versus wholeâ€crop photosynthesis:solar tracking tradeoffs in alfalfa. Evolutionary Applications, 2010, 3, 466-472.	3.1	14
47	Disentangling Direct and Indirect Fitness Effects of Microbial Dormancy. American Naturalist, 2013, 182, 147-156.	2.1	14
48	Leghaemoglobin oxygenation gradients in alfalfa and yellow sweetclover nodules. Journal of Experimental Botany, 2003, 54, 1085-1091.	4.8	12
49	When Stress Predicts a Shrinking Gene Pool, Trading Early Reproduction for Longevity Can Increase Fitness, Even with Lower Fecundity. PLoS ONE, 2009, 4, e6055.	2.5	12
50	Darwinian Agriculture. , 2009, , 214-234.		11
51	Resource acquisition and allocation traits in symbiotic rhizobia with implications for life-history outside of legume hosts. Royal Society Open Science, 2018, 5, 181124.	2.4	11
52	Legume-imposed selection for more-efficient symbiotic rhizobia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
53	Wavelength options for monitoring leghaemoglobin oxygenation gradients in intact legume root nodules. Journal of Experimental Botany, 1997, 48, 1251-1258.	4.8	7
54	Site-Specific Relationships between Flag Leaf Nitrogen, SPAD Meter Values and Grain Protein in Irrigated Wheat. Assa, Cssa and Sssa, 2015, , 113-122.	0.6	5

#	Article	IF	CITATIONS
55	Evolutionary tradeâ€offs are key to beneficial manipulation of crops by microbes. American Journal of Botany, 2019, 106, 1529-1531.	1.7	5
56	Relationships and influence of yield components on spacedâ€plant and sward seed yield in perennial ryegrass. Grass and Forage Science, 2020, 75, 424-437.	2.9	5
57	A Darwinian perspective on improving nitrogen-fixation efficiency of legume crops and forages. , 2015, , 207-222.		4
58	Bacterial persistence and bet hedging in Sinorhizobium meliloti. Communicative and Integrative Biology, 2011, 4, 98-100.	1.4	4
59	Increasing cooperation among plants, symbionts, and farmers is key to past and future progress in agriculture. Journal of Bioeconomics, 2014, 16, 223-238.	3.3	3
60	An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evolutionary Applications, 2022, 15, 1490-1504.	3.1	3
61	Drowning out the protection racket: partner manipulation or drought can strengthen ant–plant mutualism. Trends in Plant Science, 2014, 19, 411-413.	8.8	1
62	Evolutionary Stability of Rhizobium Mutualism Depends on Legume Host Sanctions., 2005,, 221-224.		1
63	Tomato Yield - Color Infrared Photograph Relationships. Assa, Cssa and Sssa, 0, , 1483-1491.	0.6	O
64	Copy competitively-tested adaptations of wild species, maybe, but not natural ecosystems tested only by persistence. Outlook on Agriculture, 2022, 51, 46-54.	3.4	0
65	Clade-dependent effects of drought on nitrogen fixation and its components – Number, size, and activity of nodules in legumes. Field Crops Research, 2022, 284, 108586.	5.1	O