
Juerg Schwaller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1732581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-mobility-group protein A1 in MPN progression. Blood, 2022, 139, 2730-2732.	1.4	Ο
2	Molecular Landscapes and Models of Acute Erythroleukemia. HemaSphere, 2021, 5, e558.	2.7	2
3	NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life, 2021, 11, 877.	2.4	11
4	MLL-AF4+ infant leukemia: a microRNA affair. Blood, 2021, 138, 2014-2015.	1.4	2
5	Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metabolism, 2020, 32, 829-843.e9.	16.2	122
6	NSD1 in erythroid differentiation and leukemogenesis. Molecular and Cellular Oncology, 2020, 7, 1809919.	0.7	4
7	Role of Meningioma 1 for maintaining the transformed state in MLL-rearranged acute myeloid leukemia: potential for therapeutic intervention?. Haematologica, 2020, 105, 1174-1176.	3.5	0
8	Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood, 2020, 136, 698-714.	1.4	28
9	Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia. Nature Communications, 2020, 11, 2807.	12.8	18
10	Transforming activities of the <i>NUP98-KMT2A</i> fusion gene associated with myelodysplasia and acute myeloid leukemia. Haematologica, 2020, 105, 1857-1867.	3.5	7
11	Writing Constructive Reviews for Scientific Journals. HemaSphere, 2020, 4, e343.	2.7	0
12	Learning from mouse models of MLL fusion gene-driven acute leukemia. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194550.	1.9	7
13	Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature, 2019, 572, 254-259.	27.8	246
14	Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Frontiers in Pediatrics, 2019, 7, 401.	1.9	27
15	Murine Models of Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2019, 20, 453.	4.1	40
16	Dual roles of EZH2 in acute myeloid leukemia. Journal of Experimental Medicine, 2019, 216, 725-727.	8.5	14
17	Novel insights into the role of aberrantly expressed MNX1 (HLXB9) in infant acute myeloid leukemia. Haematologica, 2019, 104, 1-3.	3.5	10
18	The Impact of the Cellular Origin in Acute Myeloid Leukemia: Learning From Mouse Models. HemaSphere, 2019, 3, e152.	2.7	8

#	Article	IF	CITATIONS
19	Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene–Driven Myeloid Leukemia. Cancer Discovery, 2019, 9, 1736-1753.	9.4	37
20	Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia. Leukemia, 2019, 33, 1360-1372.	7.2	40
21	Transformation Mechanisms of the Nfia-ETO2 Fusion Gene Associated with Pediatric Pure Acute Erythroleukemia. Blood, 2019, 134, 532-532.	1.4	1
22	LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. Blood, 2018, 131, blood-2017-05-786962.	1.4	32
23	Aggressive leukemia driven by MLL-AF9. Molecular and Cellular Oncology, 2018, 5, e1241854.	0.7	11
24	A Novel Inducible Mouse Model of <i>MLLâ€ENL</i> â€driven Mixedâ€lineage Acute Leukemia. HemaSphere, 2018, 2, e51.	2.7	14
25	Abstract 1892: Discovery of targeted therapies for acute myeloid leukemia patients withNUP98-NSD1andFLT3-ITD. , 2018, , .		0
26	The hematopoietic precursor cell in which driver mutations occur is linked to AML aggressiveness – a potential target for personalized medicine. Expert Review of Precision Medicine and Drug Development, 2017, 2, 1-3.	0.7	2
27	Leukemic Stem Cells Co-Opt Normal Bone Marrow Niches As a Source of Energy and Antioxidant Defence. Blood, 2017, 130, 94-94.	1.4	3
28	Fetal Inactivation of the Nuclear Interacting SET Domain Protein 1 Impairs Terminal Erythroid Maturation and Results in Acute Erythroleukemia in Mice. Blood, 2017, 130, 713-713.	1.4	2
29	Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype. PLoS ONE, 2016, 11, e0152321.	2.5	29
30	Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Science Advances, 2016, 2, e1600760.	10.3	90
31	MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell, 2016, 30, 43-58.	16.8	176
32	Identification of Optimized Compound Combinations for the Treatment of NUP98-NSD1+ AML. Blood, 2016, 128, 4711-4711.	1.4	0
33	ETO2-GLIS2 Controls Differentiation Arrest and Self-Renewal through Aberrant Enhancers Regulation in Pediatric Leukemia. Blood, 2016, 128, 572-572.	1.4	0
34	Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Research, 2015, 75, 5106-5119.	0.9	193
35	Validation and Structural Characterization of the LEDGF/p75–MLL Interface as a New Target for the Treatment of MLL-Dependent Leukemia. Cancer Research, 2014, 74, 5139-5151.	0.9	41
36	Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 2014, 512, 78-81.	27.8	375

#	Article	IF	CITATIONS
37	PIM Kinases Are Essential for Chronic Lymphocytic Leukemia Cell Survival (PIM2/3) and CXCR4-Mediated Microenvironmental Interactions (PIM1). Molecular Cancer Therapeutics, 2014, 13, 1231-1245.	4.1	61
38	Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction. Haematologica, 2014, 99, 1465-1471.	3.5	44
39	Targeting Aberrant Self-Renewal of Leukemic Cells with a Novel CBP/p300 Bromodomain Inhibitor. Blood, 2014, 124, 3750-3750.	1.4	1
40	Identification of Novel Therapeutic Strategies for NUP98-NSD1-Positive AML By Drug Sensitivity Profiling. Blood, 2014, 124, 2160-2160.	1.4	0
41	Conditional Expression of a Leukemogenic Fusion Oncogene in Murine Hematopoietic Stem Cells Results in Highly Invasive AML with Origin-Related Genetic Signatures of Prognostic Significance for the Human Disease. Blood, 2014, 124, 779-779.	1.4	Ο
42	PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains. Cancer Research, 2013, 73, 3336-3346.	0.9	218
43	Trithorax and polycomb cooperation in MLL fusion acute leukemia. Haematologica, 2013, 98, 825-827.	3.5	1
44	A Novel Conditional Mouse Model For MLL-ENL Induced Acute Leukemia. Blood, 2013, 122, 1277-1277.	1.4	0
45	Sympathetic Neuropathy Of The Hematopoietic Stem Cell Niche Is Essential For Myeloproliferative Neoplasms. Blood, 2013, 122, 268-268.	1.4	0
46	Loss of CCDC6 Affects Cell Cycle through Impaired Intra-S-Phase Checkpoint Control. PLoS ONE, 2012, 7, e31007.	2.5	16
47	Cellular and Molecular Targets of MLL-AF9 in a Novel Conditional Mouse Model. Blood, 2012, 120, 1280-1280.	1.4	0
48	Epigenetic Mechanisms in Acute Myeloid Leukemia. , 2011, 67, 197-219.		8
49	High-Throughput Kinase Profiling: A More Efficient Approach toward the Discovery of New Kinase Inhibitors. Chemistry and Biology, 2011, 18, 868-879.	6.0	105
50	PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica, 2010, 95, 1004-1015.	3.5	307
51	Insights into molecular pathways for targeted therapeutics in acute leukemia. Swiss Medical Weekly, 2010, 140, w13068.	1.6	5
52	Dissection of PIM serine/threonine kinases in FLT3-ITD–induced leukemogenesis reveals PIM1 as regulator of CXCL12–CXCR4-mediated homing and migration. Journal of Experimental Medicine, 2009, 206, 1957-1970.	8.5	128
53	Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Modern Pathology, 2009, 22, 476-487.	5.5	79
54	Programmed death 1 signaling on chronic myeloid leukemia–specific T cells results in T-cell exhaustion and disease progression. Blood, 2009, 114, 1528-1536.	1.4	250

#	Article	IF	CITATIONS
55	Dissection of PIM serine/threonine kinases in FLT3-ITD–induced leukemogenesis reveals PIM1 as regulator of CXCL12–CXCR4-mediated homing and migration. Journal of Cell Biology, 2009, 186, i7-i7.	5.2	Ο
56	Role of the tumor necrosis factor ligand APRIL in Hodgkin's lymphoma: a retrospective study including 107 cases. Experimental Hematology, 2008, 36, 533-534.	0.4	5
5 7	Prostate-Specific Membrane Antigen Expression Is a Potential Prognostic Marker in Endometrial Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 571-577.	2.5	21
58	Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood, 2008, 111, 3931-3940.	1.4	402
59	Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia. Blood, 2008, 111, 5672-5682.	1.4	70
60	Collaboration of the Meningioma 1 (MN1) Oncogene with MLL-Fusions in Pediatric Leukemia. Blood, 2008, 112, 3786-3786.	1.4	0
61	Dissecting Proto-Oncogenic PIM Serine/Threonine Kinases in FLT3-ITDInduced Leukemogenesis: PIM1 Regulates CXCL12/CXCR4-Mediated Homing and Migration. Blood, 2008, 112, 3796-3796.	1.4	1
62	Structural Analysis Identifies Imidazo[1,2- <i>b</i>]Pyridazines as PIM Kinase Inhibitors with <i>In vitro</i> Antileukemic Activity. Cancer Research, 2007, 67, 6916-6924.	0.9	183
63	A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20523-20528.	7.1	342
64	Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood, 2007, 109, 331-338.	1.4	138
65	PD-1 Signaling on Chronic Myeloid Leukemia-Specific T Cells Results in T Cell Exhaustion and Disease Progression Blood, 2007, 110, 2923-2923.	1.4	0
66	Genetic alterations in urothelial bladder carcinoma. Cancer, 2006, 106, 1205-1216.	4.1	72
67	Targeting PIM Kinases Impairs Survival of Hematopoietic Cells Transformed by Kinase Inhibitor–Sensitive and Kinase Inhibitor–Resistant Forms of Fms-Like Tyrosine Kinase 3 and BCR/ABL. Cancer Research, 2006, 66, 3828-3835.	0.9	97
68	siRNA-mediated inhibition of E2A-PBX1 reduces EB-1 and Wnt16b expression in 697 pre-B leukemia cells. Haematologica, 2006, 91, 724.	3.5	0
69	MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-κB-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood, 2005, 105, 2891-2899.	1.4	77
70	Downregulation of 14-3-3 $\ddot{l}f$ in ovary, prostate and endometrial carcinomas is associated with CpG island methylation. Modern Pathology, 2005, 18, 340-348.	5.5	83
71	Molecular mechanisms of myeloid malignancies: on the hunt for new therapeutic targets. Drug Discovery Today Disease Mechanisms, 2004, 1, 259-266.	0.8	2
72	Role of constitutively activated protein tyrosine kinases in malignant myeloproliferative disorders: an update. Current Opinion in Hematology, 2003, 10, 40-48.	2.5	10

#	Article	IF	CITATIONS
73	H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor 1² gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood, 2001, 97, 3910-3918.	1.4	120
74	The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genetics and Cytogenetics, 2001, 130, 93-104.	1.0	107
75	Socs-1 Inhibits TEL-JAK2-Mediated Transformation of Hematopoietic Cells through Inhibition of JAK2 Kinase Activity and Induction of Proteasome-Mediated Degradation. Molecular and Cellular Biology, 2001, 21, 3547-3557.	2.3	157
76	Stat5 Is Essential for the Myelo- and Lymphoproliferative Disease Induced by TEL/JAK2. Molecular Cell, 2000, 6, 693-704.	9.7	289
77	TEL/PDGFβR Induces Hematologic Malignancies in Mice That Respond to a Specific Tyrosine Kinase Inhibitor. Blood, 1999, 93, 1707-1714.	1.4	111
78	TEL/PDGFβR Induces Hematologic Malignancies in Mice That Respond to a Specific Tyrosine Kinase Inhibitor. Blood, 1999, 93, 1707-1714.	1.4	21
79	Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO Journal, 1998, 17, 5321-5333.	7.8	249
80	Posttranscriptional stabilization underlies p53-independent induction of p21WAF1/CIP1/SDI1 in differentiating human leukemic cells Journal of Clinical Investigation, 1995, 95, 973-979.	8.2	111