Pedro Velarde Mayol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1732351/publications.pdf

Version: 2024-02-01

55 papers 502 citations

687363 13 h-index 713466 21 g-index

57 all docs

57 docs citations

57 times ranked

331 citing authors

#	Article	IF	Citations
1	EMcLAW: An unsplit Godunov method for Maxwell 's equations including polarization, metals, divergence control and AMR. Computer Physics Communications, 2021, 260, 107268.	7.5	4
2	First radiative shock experiments on the SG-II laser. High Power Laser Science and Engineering, 2021, 9, .	4.6	10
3	3D multi-scale modelling of plasma-based seeded soft X-ray lasers. European Physical Journal D, 2021, 75, 1.	1.3	3
4	Interaction of Hemispherical Blast Waves with Inhomogeneous Spheres: Probing the Collision of a Supernova Ejecta with a Nearby Companion Star in the Laboratory. Astrophysical Journal, 2019, 871, 177.	4.5	6
5	2D and 3D modelling of plasma amplifiers of UV, XUV, and soft x-rays. , 2019, , .		O
6	Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers. Physical Review E, 2018, 97, 023203.	2.1	11
7	Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser. High Energy Density Physics, 2017, 23, 20-30.	1.5	12
8	Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors. High Energy Density Physics, 2017, 23, 60-72.	1.5	12
9	DAGON: a 3D Maxwell-Bloch code. Proceedings of SPIE, 2017, , .	0.8	5
10	Counterpropagating Radiative Shock Experiments on the Orion Laser. Physical Review Letters, 2017, 119, 055001.	7.8	24
11	Quantum interference of high-order harmonics from mixed gases. Physical Review A, 2016, 94, .	2.5	3
12	Structure of a laser-driven radiative shock. High Energy Density Physics, 2015, 17, 106-113.	1.5	21
13	Simulation of radiative shock waves in Xe of last PALS experiments. High Energy Density Physics, 2015, 17, 68-73.	1.5	12
14	Development of a Godunov method for Maxwell's equations with Adaptive Mesh Refinement. Journal		
	of Computational Physics, 2015, 300, 186-201.	3.8	17
15		0.2	0
	of Computational Physics, 2015, 300, 186-201. Time-Dependent Simulation of Carbon Illuminated by a High Intensity X-Ray Laser. Springer Proceedings		
15	of Computational Physics, 2015, 300, 186-201. Time-Dependent Simulation of Carbon Illuminated by a High Intensity X-Ray Laser. Springer Proceedings in Physics, 2014, , 83-87. Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated	0.2	0

#	Article	IF	CITATIONS
19	Multi-tens of GW peak power plasma-based soft x-ray laser. Proceedings of SPIE, 2013, , .	0.8	O
20	X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers. Applied Sciences (Switzerland), 2013, 3, 581-592.	2.5	4
21	Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA. , 2012, , .		O
22	A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers. Nature Photonics, 2012, 6, 764-767.	31.4	38
23	Fully coherent, wake and ASE-suppressed 15 \hat{l} /4J, 120 fs amplified high order harmonic pulse demonstrated with 1D time-dependant Bloch-Maxwell code., 2011,,.		O
24	Modelling and design of high harmonic seeding in soft x-ray laser plasmas with both direct and stretched amplification techniques: application to ELI facilities. , 2011 , , .		1
25	Bloch-Maxwell modelling of multi-mJ $100\mathrm{fs}$ fully coherent amplified high harmonic pulse. Proceedings of SPIE, $2011,\ldots$	0.8	O
26	Equation of State for laboratory astrophysics applications. Astrophysics and Space Science, 2011, 336, 53-59.	1.4	10
27	Radiative properties for warm and hot dense matter. High Energy Density Physics, 2011, 7, 163-168.	1.5	15
28	Bloch–Maxwell treatment of amplification of high harmonic seed in soft x-ray laser amplifiers in both direct and chirped amplifications. High Energy Density Physics, 2011, 7, 230-233.	1.5	0
29	Study of rapid ionisation for simulation of soft X-ray lasers with the 2D hydro-radiative code ARWEN. High Energy Density Physics, 2011, 7, 294-302.	1.5	4
30	Comparison of natural and forced amplification regimes in plasma-based soft-x-ray lasers seeded by high-order harmonics. Physical Review A, 2011, 84, .	2.5	35
31	Producing ultrashort, ultraintense plasma-based soft-x-ray laser pulses by high-harmonic seeding. Physical Review A, 2010, 81, .	2.5	13
32	Comparison of Acceleration Methods in a Radiation Transport Code With Adaptive Mesh Refinement. IEEE Transactions on Plasma Science, 2010, 38, 2359-2366.	1.3	7
33	Optimization of soft x-ray amplifiers by controlling plasma hydrodynamics. AIP Conference Proceedings, 2010, , .	0.4	O
34	Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: A transition in hydrodynamic behavior for plasma columns with widths ranging from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>20</mml:mn><0.00<mml:mtext>â€,</mml:mtext><mml:mi>μ</mml:mi><mml:mi>μ</mml:mi>(mml:mi>)</mml:math>	2.1 nml:mtext	16 >m
35	2 mm. Physical Review E, 2010, 82, 056408. Optimized soft x-ray amplifier by tailoring plasma hydrodynamics., 2009,,. 2D numerical comparison between <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td>O</td></mml:math>		O
36	altimg="si3.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>S</mml:mtext></mml:mrow><mml:mrov <mml:math="" altimg="si4.gif" and="" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrov></mml:msub></mml:mrow>	1.0	U

3

#	Article	IF	Citations
37	Optimization of soft x-ray amplifier by tailoring plasma hydrodynamics. Optics Letters, 2009, 34, 2640.	3.3	20
38	Simulations of radiative shocks and jet formation in laboratory plasmas. Journal of Physics: Conference Series, 2008, 112, 042010.	0.4	2
39	Study of the impact of small-scale plasma modulations and the size of the plasma on seeded soft x-ray laser homogeneity Journal of Physics: Conference Series, 2008, 112, 042066.	0.4	1
40	Transverse spatial improvement of a transiently pumped soft-x-ray amplifier. Physical Review A, 2006, 74, .	2.5	15
41	Interaction of supernova remnants: From the circumstellar medium to the terrestrial laboratory. Physics of Plasmas, 2006, 13, 092901.	1.9	13
42	Interaction of supernovae remnants: From the circumstellar medium to the terrestrial laboratory. European Physical Journal Special Topics, 2006, 133, 1035-1037.	0.2	0
43	Fast-ignition heavy-ion fusion target by jet impact. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 329-332.	1.6	3
44	Comparison between jet collision and shell impact concepts for fast ignition. Laser and Particle Beams, 2005, 23, .	1.0	35
45	Soft X-ray laser of second generation. , 2005, , .		0
46	Recent theoretical and experimental results on inertial fusion energy physics. , 2003, , .		0
47	Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 464, 61-71.	1.6	2
48	Development of a radiation transport fluid dynamic code under AMR scheme. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 71, 541-550.	2.3	43
49	Inertial fusion activities in Spain. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415, 35-43.	1.6	1
50	Heavy ion fusion research in Spain. Fusion Engineering and Design, 1996, 32-33, 45-53.	1.9	1
51	Conical targets and pinch confinement for inertial fusion. Laser and Particle Beams, 1996, 14, 665-678.	1.0	0
52	A FCT Method for Staggered Mesh. Journal of Computational Physics, 1993, 108, 27-37.	3.8	5
53	Numerical and theoretical studies on the ignition of ICF plasmas driven by ion beams. Il Nuovo Cimento A, 1993, 106, 1873-1881.	0.2	5
54	Recent results in the analysis of heavy-ion-beam-driven ICF targets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 278, 105-109.	1.6	7

#	Article	IF	CITATIONS
55	Analysis of directly driven ICF targets. Laser and Particle Beams, 1986, 4, 349-392.	1.0	43