Montserrat Terrazas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731912/publications.pdf

Version: 2024-02-01

759233 752698 32 454 12 20 h-index citations g-index papers 37 37 37 572 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Research, 2009, 37, 346-353.	14.5	79
2	A Multidisciplinary Approach for the Identification of Novel HIVâ€1 Nonâ€Nucleoside Reverse Transcriptase Inhibitors: Sâ€DABOCs and DAVPs. ChemMedChem, 2008, 3, 573-593.	3.2	37
3	Modified siRNAs for the study of the PAZ domain. Chemical Communications, 2010, 46, 4270.	4.1	34
4	Effect of <i>North</i> Bicyclo[3.1.0]hexane 2′â€Deoxyâ€pseudosugars on RNA Interference: A Novel Class of siRNA Modification. ChemBioChem, 2011, 12, 1056-1065.	2.6	30
5	Enzymatically Catalyzed DNA Synthesis Using <scp>L</scp> â€Aspâ€dGMP, <scp>L</scp> â€Aspâ€dCMP, and <scp>L</scp> â€Aspâ€dTMP. Chemistry and Biodiversity, 2008, 5, 31-39.	2.1	23
6	Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. Chem Catalysis, 2022, 2, 1084-1099.	6.1	20
7	Discovery of Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Competing with the Nucleotide Substrate. Angewandte Chemie - International Edition, 2007, 46, 1810-1813.	13.8	19
8	An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nature Catalysis, 2019, 2, 544-552.	34.4	18
9	Efficient siRNA–peptide conjugation for specific targeted delivery into tumor cells. Chemical Communications, 2017, 53, 2870-2873.	4.1	16
10	Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units. Molecules, 2015, 20, 7602-7619.	3.8	15
11	Stepwise synthesis of oligonucleotide–peptide conjugates containing guanidinium and lipophilic groups in their 3′-termini. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2144-2147.	2.2	14
12	Functionalization of the 3′â€Ends of DNA and RNA Strands with Nâ€ethylâ€Nâ€coupled Nucleosides: A Promising Approach To Avoid 3′â€Exonucleaseâ€Catalyzed Hydrolysis of Therapeutic Oligonucleotides. ChemBioChem, 2013, 14, 510-520.	2.6	13
13	RNA/aTNA Chimeras: RNAi Effects and Nucleases Resistance of Single and Double Stranded RNAs. Molecules, 2014, 19, 17872-17896.	3.8	13
14	The Origins and the Biological Consequences of the Pur/Pyr DNA·RNA Asymmetry. CheM, 2019, 5, 1619-1631.	11.7	13
15	A Direct, Efficient Method for the Preparation of siRNAs Containing Ribo-like <i>North</i> Bicyclo[3.1.0]hexane Pseudosugars. Organic Letters, 2011, 13, 2888-2891.	4.6	12
16	A Direct, Efficient Method for the Preparation of N6-Protected 15N-Labeled Adenosines. Journal of Organic Chemistry, 2004, 69, 5473-5475.	3.2	11
17	Synthesis, RNAi activity and nuclease-resistant properties of apolar carbohydrates siRNA conjugates. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4048-4051.	2.2	11
18	Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression. Nucleic Acids Research, 2016, 44, 4354-4367.	14.5	9

#	Article	IF	CITATIONS
19	Synthesis of Oligonucleotide–Peptide Conjugates for Biomedical and Technological Applications. Methods in Molecular Biology, 2011, 751, 223-238.	0.9	9
20	A novel nucleophilic approach to 1-alkyladenosines. A two-step synthesis of $[1-15N]$ adenosine from inosine. Chemical Communications, 2005, , 3968.	4.1	8
21	[N,1-15N2]-2â€~-Deoxyadenosines. Organic Letters, 2005, 7, 2477-2479.	4.6	8
22	Pd-catalysed amidation of 2,6-dihalopurine nucleosides. Replacement of iodine at $0\hat{A}^{\circ}$ C. Tetrahedron Letters, 2012, 53, 1358-1362.	1.4	8
23	Synthesis and Properties of Oligonucleotides Carrying Isoquinoline Imidazo[1,2-a]azine Fluorescent Units. Bioconjugate Chemistry, 2010, 21, 1622-1628.	3.6	7
24	Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angewandte Chemie - International Edition, 2015, 54, 10488-10491.	13.8	7
25	The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Computational Biology, 2021, 17, e1009547.	3.2	6
26	Synthesis and properties of small interfering RNA duplexes carrying 5-ethyluridine residues. Molecular Diversity, 2011, 15, 677-686.	3.9	4
27	Advantages of the Ns group in the reactions of N1-SO2R inosines with benzylamine and with 15NH3. Tetrahedron Letters, 2005, 46, 5127-5130.	1.4	3
28	A multifunctional toolkit for target-directed cancer therapy. Chemical Communications, 2019, 55, 802-805.	4.1	1
29	Molecular basis of Arginine and Lysine DNA sequence-dependent thermo-stability modulation. PLoS Computational Biology, 2022, 18, e1009749.	3.2	1
30	Inside Cover: Effect of North Bicyclo[3.1.0]hexane 2′-Deoxy-pseudosugars on RNA Interference: A Novel Class of siRNA Modification (ChemBioChem 7/2011). ChemBioChem, 2011, 12, 974-974.	2.6	0
31	Challenges and Opportunities for Oligonucleotide-Based Therapeutics by Antisense and RNA Interference Mechanisms. , 2014, , 227-242.		0
32	Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides. Methods in Molecular Biology, 2021, 2167, 183-202.	0.9	0