Yizhuo Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between carbon nanotubes with functional groups and epoxy resin and its effect on thermal properties of carbon nanotubes/epoxy composites. Journal of Composite Materials, 2022, 56, 1287-1298.	2.4	5
2	Mode <scp>II</scp> interlaminar fracture toughness enhancement of fine <scp>zâ€pin</scp> reinforced carbon fiber composite with low fraction of pins. Polymer Composites, 2022, 43, 2992-3002.	4.6	6
3	Degradation mechanism for mechanical property of carbon fiber reinforced epoxy composite under simulated seawater absorption coupled with flexural load. Journal of Materials Research and Technology, 2022, 19, 4658-4671.	5.8	2
4	Characterization of intraâ€ply shear behaviors of unidirectional prepregs during hot diaphragm forming process. Polymer Composites, 2021, 42, 1008-1020.	4.6	3
5	Delamination properties and <i>in situ</i> damage monitoring of z-pinned carbon fiber/epoxy composites. Science and Engineering of Composite Materials, 2021, 28, 415-425.	1.4	4
6	The Fabrication and Properties of a Bendable High-Temperature Resistance Conductive Pitch-Based Carbon/CNT Film Nanocomposite. Nanomaterials, 2021, 11, 758.	4.1	4
7	Structure Design of GFRP Composite Leaf Spring: An Experimental and Finite Element Analysis. Polymers, 2021, 13, 1193.	4.5	8
8	Carbon-Nanotube-Film-Based Electrical Impedance Tomography for Structural Damage Detection of Carbon-Fiber-Reinforced Composites. ACS Applied Nano Materials, 2021, 4, 5590-5597.	5.0	7
9	Enhanced electromagnetic shielding property and anisotropic shielding behavior of corrugated carbon fiber felt composite and its sandwich structure. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106481.	7.6	34
10	Tuning interlaminar fracture toughness of fine z-pin reinforced polymer composite. Materials and Design, 2021, 212, 110293.	7.0	17
11	Mechanical and electrical enhancement of super-aligned carbon nanotube film by organic and inorganic doping. Nanotechnology, 2020, 31, 075601.	2.6	2
12	Fiber distribution of long fiber reinforced polyamide and effect of fiber orientation on mechanical behavior. Polymer Composites, 2020, 41, 1531-1550.	4.6	12
13	Enhanced microwave shielding effectiveness and suppressed reflection of chopped carbon fiber felt by electrostatic flocking of carbon fiber. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106099.	7.6	28
14	Effects of curing time and de-molding temperature on the deformation of glass fiber/epoxy resin prepreg laminates fabricated by rapid hot press. Polymers and Polymer Composites, 2019, 27, 301-313.	1.9	6
15	Thermal conductivity enhancement and heat transport mechanism of carbon fiber z-pin graphite composite structures. Composites Part B: Engineering, 2019, 172, 603-611.	12.0	21
16	Electromagnetic shielding property of carbon fiber felt made of different types of short-chopped carbon fibers. Composites Part A: Applied Science and Manufacturing, 2019, 121, 289-298.	7.6	52
17	A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 2019, 7, 24311-24319.	10.3	34
18	Effect of microstructure on the piezoresistive behavior of carbon nanotube composite film. Materials Research Express, 2019, 6, 025034.	1.6	7

#	Article	IF	CITATIONS
19	Experimental and numerical studies on compaction of carbon fiber composite joint with variable crossâ€section using thermal expansion process. Polymer Composites, 2019, 40, E1057.	4.6	4
20	Characterization and analysis of torsion property of carbon fiber bundle combined with epoxy resin. Polymer Composites, 2018, 39, E2529.	4.6	4
21	Influences of in-plane and out-of-plane fiber waviness on mechanical properties of carbon fiber composite laminate. Journal of Reinforced Plastics and Composites, 2018, 37, 877-891.	3.1	27
22	Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite. Composites Science and Technology, 2018, 166, 176-182.	7.8	44
23	Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitchâ€based carbon fibers. Journal of Applied Polymer Science, 2018, 135, 46269.	2.6	24
24	Densification of chlorine-doped continuous CNT sheet/polyvinylidene fluoride sandwich film and improvement of the mechanical and dielectric properties. Nanotechnology, 2018, 29, 035701.	2.6	7
25	Resistance heating forming process based on carbon fiber veil for continuous glass fiber reinforced polypropylene. Journal of Reinforced Plastics and Composites, 2018, 37, 366-380.	3.1	19
26	Gamma Ray Shielding Property of Tungsten Powder Modified Continuous Basalt Fiber Reinforced Epoxy Matrix Composites. Polymer Composites, 2018, 39, E2106.	4.6	25
27	Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations. Applied Composite Materials, 2018, 25, 1255-1268.	2.5	9
28	Piezoresistivity of resin-impregnated carbon nanotube film at high temperatures. Nanotechnology, 2018, 29, 365702.	2.6	6
29	Carbon nanotube film/epoxy composites with high strength and toughness. Polymer Composites, 2017, 38, 588-596.	4.6	33
30	Hybrid effect of carbon nanotube film and ultrathin carbon fiber prepreg composites. Journal of Reinforced Plastics and Composites, 2017, 36, 452-463.	3.1	18
31	Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 2017, 143, 67-74.	7.8	91
32	Annealing effect on crystalline structure and mechanical properties in long glass fiber reinforced polyamide 66. Journal of Applied Polymer Science, 2017, 134, .	2.6	18
33	Gamma ray shielding property, shielding mechanism and predicting model of continuous basalt fiber reinforced polymer matrix composite containing functional filler. Materials and Design, 2017, 124, 121-130.	7.0	48
34	The loading-rate dependent tensile behavior of CNT film and its bismaleimide composite film. Materials and Design, 2017, 117, 37-46.	7.0	23
35	Fabrication and characterization of structural/dielectric three-phase composite: Continuous basalt fiber reinforced epoxy resin modified with graphene nanoplates. Composites Part A: Applied Science and Manufacturing, 2017, 94, 199-208.	7.6	31
36	Permeabilities along fiber direction of ramie bundles and through-thickness of ramie fabric stack for liquid composite molding. Journal of Reinforced Plastics and Composites, 2017, 36, 40-52.	3.1	5

Үігнио Gu

#	Article	IF	CITATIONS
37	Influence of surface state on moisture sensitivity of carbon fiber and its composite interfacial properties. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 757-764.	1.0	4
38	Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon, 2016, 107, 405-414.	10.3	62
39	Effect of sizing on interfacial adhesion of commercial high strength carbon fiberâ€reinforced resin composites. Polymer Composites, 2016, 37, 254-261.	4.6	32
40	Strong, flexible and thermal-resistant CNT/polyarylacetylene nanocomposite films. RSC Advances, 2016, 6, 4077-4084.	3.6	12
41	Core–shell SiC/SiO2 whisker reinforced polymer composite with high dielectric permittivity and low dielectric loss. Materials and Design, 2016, 89, 933-940.	7.0	58
42	Electromagnetic characteristics of carbon nanotube film materials. Chinese Journal of Aeronautics, 2015, 28, 1245-1254.	5.3	32
43	Ultrastrong carbon nanotube/ bismaleimide composite film with super-aligned and tightly packing structure. Composites Science and Technology, 2015, 117, 176-182.	7.8	29
44	Interlocked CNT networks with high damping and storage modulus. Carbon, 2015, 86, 46-53.	10.3	68
45	Reaction of carbon fiber sizing and its influence on the interphase region of composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
46	Effect of Î ³ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite. Journal of Nuclear Materials, 2015, 466, 100-107.	2.7	45
47	SiC@SiO2 core@shell filler reinforced polymer composites with high dielectric permittivity and low loss. Materials Letters, 2015, 160, 16-19.	2.6	11
48	Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy. Chinese Journal of Aeronautics, 2015, 28, 1529-1538.	5.3	28
49	Enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase composite through microstructure tailoring. Composites Part A: Applied Science and Manufacturing, 2015, 74, 88-95.	7.6	52
50	Atomic oxygen exposure behaviors of CVD-grown carbon nanotube film and its polymer composite film. Composites Part A: Applied Science and Manufacturing, 2015, 71, 116-125.	7.6	21
51	Structural modification for carbon nanotube film and the composite film by processing optimization. Applied Surface Science, 2015, 349, 156-162.	6.1	6
52	Negative permittivity behavior of aligned carbon nanotube films. Applied Physics Letters, 2015, 106, .	3.3	11
53	Tuning carbon nanotube assembly for flexible, strong and conductive films. Nanoscale, 2015, 7, 3060-3066.	5.6	51
54	Characterization of torsion behavior and fracture morphology of single carbon fiber. Journal of Composite Materials, 2014, 48, 1993-1999.	2.4	5

#	Article	IF	CITATIONS
55	Resin flow monitoring inside composite laminate during resin film infusion process. Polymer Composites, 2014, 35, 681-690.	4.6	3
56	Co-curing process combining resin film infusion with prepreg and co-cured interlaminar properties of carbon fiber composites. Journal of Composite Materials, 2014, 48, 1709-1724.	2.4	14
57	Interlaminar properties of carbon fiber composite laminates with resin transfer molding/prepreg co-curing process. Journal of Reinforced Plastics and Composites, 2014, 33, 2228-2241.	3.1	6
58	Investigation of carbon fiber composite stiffened skin with vacuum assisted resin infusion/prepreg co-curing process. Science China Technological Sciences, 2014, 57, 1956-1966.	4.0	11
59	Manufacture and characterization of carbon fiber composite stiffened skin by resin film infusion/prepreg co-curing process. Journal of Reinforced Plastics and Composites, 2014, 33, 1559-1573.	3.1	10
60	Effect of acidification conditions on the properties of carbon nanotube fibers. Applied Surface Science, 2014, 292, 469-474.	6.1	42
61	Nanoscale dynamic mechanical imaging of the skin–core difference: From PAN precursors to carbon fibers. Materials Letters, 2014, 128, 417-420.	2.6	46
62	Interply friction of carbon fiber/epoxy prepreg stacks under different processing conditions. Journal of Composite Materials, 2014, 48, 515-526.	2.4	20
63	Effect of rapid curing process on the properties of carbon fiber/epoxy composite fabricated using vacuum assisted resin infusion molding. Materials & Design, 2014, 54, 624-631.	5.1	72
64	Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments. Applied Surface Science, 2014, 288, 666-672.	6.1	29
65	Macro- and micro-interfacial properties of carbon fiber reinforced epoxy resin composite under hygrothermal treatments. Journal of Reinforced Plastics and Composites, 2014, 33, 369-379.	3.1	22
66	Effect of processing temperature on the micro- and macro-interfacial properties of carbon fiber/epoxy composites. Composite Interfaces, 2014, 21, 443-453.	2.3	8
67	Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale, 2014, 6, 4338-4344.	5.6	116
68	A modified spray-winding approach to enhance the tensile performance of array-based carbon nanotube composite films. Carbon, 2013, 65, 187-195.	10.3	29
69	Improvement in mechanical and thermal properties of phenolic foam reinforced with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2013, 130, 1479-1488.	2.6	46
70	The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon, 2013, 52, 550-558.	10.3	42
71	Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon, 2013, 52, 109-121.	10.3	259
72	Effects of Processing Parameters on the Forming Quality of C-Shaped Thermosetting Composite Laminates in Hot Diaphragm Forming Process. Applied Composite Materials, 2013, 20, 927-945.	2.5	29

#	Article	IF	CITATIONS
73	Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. Journal of Applied Polymer Science, 2013, 129, 3366-3372.	2.6	42
74	Resin pressure and resin flow inside tapered laminates during zero-bleeding and bleeding processes. Journal of Reinforced Plastics and Composites, 2012, 31, 205-214.	3.1	11
75	Effect of forming temperature on the quality of hot diaphragm formed C-shaped thermosetting composite laminates. Journal of Reinforced Plastics and Composites, 2012, 31, 1074-1087.	3.1	28
76	Characterization of interfacial toughness in carbon fiber/epoxy resin composite subjected to water aging using singleâ€fiber fragmentation method in an energyâ€based model. Polymer Composites, 2012, 33, 716-722.	4.6	12
77	Investigation of the nanoscale mechanical properties of carbon fiber/epoxy resin interphase. I. analysis of fiberâ€stiffening effect during the nanoindentation process based on numerical simulation. Polymer Composites, 2012, 33, 1387-1394.	4.6	11
78	Role of Tool-Part Interaction in Consolidation of L-Shaped Laminates during Autoclave Process. Applied Composite Materials, 2012, 19, 583-597.	2.5	13
79	Chemical interaction between carbon fibers and surface sizing. Journal of Applied Polymer Science, 2012, 124, 2127-2132.	2.6	41
80	Numerical and Experimental Study of the Bleeder Flow in Autoclave Process. Applied Composite Materials, 2011, 18, 327-336.	2.5	18
81	Online monitoring and analysis of resin pressure inside composite laminate during zeroâ€bleeding autoclave process. Polymer Composites, 2011, 32, 314-323.	4.6	26
82	Study on the resin flow and fiber compaction of tapered composite laminates during autoclave processing. Journal of Reinforced Plastics and Composites, 2011, 30, 1399-1411.	3.1	7
83	Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon, 2010, 48, 3229-3235.	10.3	136
84	Void formation model and measuring method of void formation condition during hot pressing process. Polymer Composites, 2010, 31, 1562-1571.	4.6	28
85	Pressure Transfer Behaviour of Rubber Mould and the Effects on Consolidation of L-Shape Composite Laminates. Polymers and Polymer Composites, 2010, 18, 167-174.	1.9	6
86	Numerical and Experimental Study on the Effect of Lay-Up Type and Structural Elements on Thickness Uniformity of L-Shaped Laminates. Applied Composite Materials, 2009, 16, 101-115.	2.5	36
87	Pressure window analysis for thin laminated composites in autoclave process. Polymer Composites, 2009, 30, 169-175.	4.6	3
88	Effects of resin storage aging on rheological property and consolidation of composite laminates. Polymer Composites, 2009, 30, 1081-1090.	4.6	11
89	Numerical analysis of parametric effects on consolidation of angleâ€bended composite laminates. Polymer Composites, 2009, 30, 1510-1516.	4.6	10
90	A new method to characterize the cure state of epoxy prepreg by dynamic mechanical analysis. Thermochimica Acta, 2009, 487, 8-17.	2.7	36

#	Article	IF	CITATIONS
91	Experimental Investigation on the Co-Cure Processing of Honeycomb Structure with Self-Adhesive Prepreg. Applied Composite Materials, 2008, 15, 47-59.	2.5	22
92	Numerical simulation of twoâ€dimensional flow and compaction during the consolidation of laminated composites. Polymer Composites, 2008, 29, 560-568.	4.6	19
93	Numerical Simulation of Flow and Compaction During the Cure of Laminated Composites. Journal of Reinforced Plastics and Composites, 2007, 26, 251-268.	3.1	17
94	A simple method for the measurement of compaction and corresponding transverse permeability of composite prepregs. Polymer Composites, 2007, 28, 61-70.	4.6	36
95	Numerical Simulation and Experimental Study on Consolidation of Toughened Epoxy Resin Composite Laminates. Journal of Composite Materials, 2006, 40, 2257-2277.	2.4	29