
Steeve Boulant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ExÂvivo and inÂvivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Molecular Therapy, 2022, 30, 2005-2023.	3.7	10
2	Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. Journal of Virology, 2022, 96, e0170521.	1.5	17
3	The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication <i>In Vitro</i> and Decreases Viral Titers and Disease Progression in Syrian Hamsters. MBio, 2022, 13, e0370521.	1.8	22
4	Mapping the epithelial–immune cell interactome upon infection in the gut and the upper airways. Npj Systems Biology and Applications, 2022, 8, 15.	1.4	3
5	A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell, 2022, 185, 2354-2369.e17.	13.5	26
6	A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metabolism, 2022, 34, 857-873.e9.	7.2	40
7	Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nature Communications, 2022, 13, 2564.	5.8	32
8	Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nature Genetics, 2022, 54, 1103-1116.	9.4	54
9	Role of Clathrin Light Chains in Regulating Invadopodia Formation. Cells, 2021, 10, 451.	1.8	6
10	SARS oVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
11	Singleâ€cell analyses reveal SARSâ€CoVâ€2 interference with intrinsic immune response in the human gut. Molecular Systems Biology, 2021, 17, e10232.	3.2	78
12	Selective Janus kinase inhibition preserves interferon-λ–mediated antiviral responses. Science Immunology, 2021, 6, .	5.6	16
13	Singleâ€cell transcriptomics reveals immune response of intestinal cell types to viral infection. Molecular Systems Biology, 2021, 17, e9833.	3.2	24
14	Host factors facilitating SARS oVâ€2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 2021, 78, 5953-5976.	2.4	19
15	TMPRSS2 expression dictates the entry route used by SARSâ€CoVâ€2 to infect host cells. EMBO Journal, 2021, 40, e107821.	3.5	223
16	Adapting Gastrointestinal Organoids for Pathogen Infection and Single Cell Sequencing under Biosafety Level 3 (BSL-3) Conditions. Journal of Visualized Experiments, 2021, , .	0.2	1
17	Microscopyâ€based assay for semiâ€quantitative detection of SARS oVâ€2 specific antibodies in human sera. BioEssays, 2021, 43, e2000257.	1.2	22
18	Conserved Induction of Distinct Antiviral Signalling Kinetics by Primate Interferon Lambda 4 Proteins. Frontiers in Immunology, 2021, 12, 772588.	2.2	6

#	Article	IF	CITATIONS
19	Invasiveness of Escherichia coli Is Associated with an IncFII Plasmid. Pathogens, 2021, 10, 1645.	1.2	3
20	Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells. Nature Microbiology, 2020, 5, 181-191.	5.9	45
21	Forces during cellular uptake of viruses and nanoparticles at the ventral side. Nature Communications, 2020, 11, 32.	5.8	35
22	Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nature Genetics, 2020, 52, 1283-1293.	9.4	217
23	Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host and Microbe, 2020, 28, 853-866.e5.	5.1	213
24	SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nature Communications, 2020, 11, 5885.	5.8	514
25	The origin of diarrhea in rotavirus infection. Science, 2020, 370, 909-910.	6.0	7
26	A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Science Translational Medicine, 2020, 12, .	5.8	516
27	Development of Feline Ileum- and Colon-Derived Organoids and Their Potential Use to Support Feline Coronavirus Infection. Cells, 2020, 9, 2085.	1.8	17
28	Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Frontiers in Immunology, 2020, 11, 608645.	2.2	100
29	Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Reports, 2020, 32, 107863.	2.9	295
30	NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nature Communications, 2020, 11, 3281.	5.8	36
31	3D Correlative Cryo-Structured Illumination Fluorescence and Soft X-ray Microscopy Elucidates Reovirus Intracellular Release Pathway. Cell, 2020, 182, 515-530.e17.	13.5	73
32	Enhanced Uptake and Endosomal Release of LbL Microcarriers Functionalized with Reversible Fusion Proteins. ACS Applied Bio Materials, 2020, 3, 1553-1567.	2.3	5
33	Novel Toscana Virus Reverse Genetics System Establishes NSs as an Antagonist of Type I Interferon Responses. Viruses, 2020, 12, 400.	1.5	10
34	Eden growth models for flat clathrin lattices with vacancies. New Journal of Physics, 2020, 22, 073043.	1.2	11
35	Teratogenic Rubella Virus Alters the Endodermal Differentiation Capacity of Human Induced Pluripotent Stem Cells. Cells, 2019, 8, 870.	1.8	29
36	Type-Specific Crosstalk Modulates Interferon Signaling in Intestinal Epithelial Cells. Journal of Interferon and Cytokine Research, 2019, 39, 650-660.	0.5	9

#	Article	IF	CITATIONS
37	Hypoxic Environment Promotes Barrier Formation in Human Intestinal Epithelial Cells through Regulation of MicroRNA 320a Expression. Molecular and Cellular Biology, 2019, 39, .	1.1	34
38	Differential Regulation of Type I and Type III Interferon Signaling. International Journal of Molecular Sciences, 2019, 20, 1445.	1.8	147
39	Novel Chimeric Gene Therapy Vectors Based on Adeno-Associated Virus and Four Different Mammalian Bocaviruses. Molecular Therapy - Methods and Clinical Development, 2019, 12, 202-222.	1.8	38
40	A PRDX1â€p38α heterodimer amplifies METâ€driven invasion of <i>IDH</i> â€wildtype and <i>IDH</i> â€mutant gliomas. International Journal of Cancer, 2018, 143, 1176-1187.	2.3	14
41	Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nature Communications, 2018, 9, 1109.	5.8	109
42	Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathogens, 2018, 14, e1007420.	2.1	100
43	Rubella Virus Strain-Associated Differences in the Induction of Oxidative Stress Are Independent of Their Interferon Activation. Viruses, 2018, 10, 540.	1.5	11
44	Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in Clathrin-Mediated Endocytosis. ACS Infectious Diseases, 2018, 4, 1585-1600.	1.8	18
45	Reversible Fusion Proteins as a Tool to Enhance Uptake of Virus-Functionalized LbL Microcarriers. Biomacromolecules, 2018, 19, 3212-3223.	2.6	6
46	Modeling the Flat to Curved Transition during Clathrin Mediated Endocytosis. Biophysical Journal, 2018, 114, 280a.	0.2	0
47	Assaying the Contribution of Membrane Tension to Clathrin-Mediated Endocytosis. Methods in Molecular Biology, 2018, 1847, 37-50.	0.4	3
48	miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut, 2017, 66, 1537.1-1538.	6.1	105
49	Bin1 directly remodels actin dynamics through its <scp>BAR</scp> domain. EMBO Reports, 2017, 18, 2051-2066.	2.0	42
50	Reovirus inhibits interferon production by sequestering IRF3 into viral factories. Scientific Reports, 2017, 7, 10873.	1.6	39
51	Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cellular Microbiology, 2017, 19, e12765.	1.1	25
52	Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut. Frontiers in Immunology, 2017, 8, 459.	2.2	84
53	Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF-β dependent pro-survival signaling. Cellular Microbiology, 2016, 18, 1831-1845.	1.1	36
54	HIV-1 Vpu Antagonizes CD317/Tetherin by Adaptor Protein-1-Mediated Exclusion from Virus Assembly Sites. Journal of Virology, 2016, 90, 6709-6723.	1.5	25

#	Article	IF	CITATIONS
55	Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis. Viruses, 2015, 7, 2794-2815.	1.5	157
56	Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology, 2014, 15, 717-726.	7.0	311
5 7	Dynamics of Intracellular Clathrin Carriers. Biophysical Journal, 2014, 106, 310a.	0.2	Ο
58	Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Research, 2013, 100, 215-219.	1.9	72
59	Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cellular Microbiology, 2013, 15, n/a-n/a.	1.1	73
60	Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin–Darby canine kidney cells. Molecular Biology of the Cell, 2013, 24, 1196-1207.	0.9	47
61	Host Cell Nucleolin Is Required To Maintain the Architecture of Human Cytomegalovirus Replication Compartments. MBio, 2012, 3, .	1.8	38
62	Human Cytomegalovirus UL44 Concentrates at the Periphery of Replication Compartments, the Site of Viral DNA Synthesis. Journal of Virology, 2012, 86, 2089-2095.	1.5	42
63	The First Five Seconds in the Life of a Clathrin-Coated Pit. Cell, 2012, 150, 495-507.	13.5	341
64	Dynamics of Intracellular Clathrin/AP1- and Clathrin/AP3-Containing Carriers. Cell Reports, 2012, 2, 1111-1119.	2.9	55
65	Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nature Cell Biology, 2011, 13, 1124-1131.	4.6	488
66	Recruitment of Cellular Clathrin to Viral Factories and Disruption of Clathrinâ€Dependent Trafficking. Traffic, 2011, 12, 1179-1195.	1.3	24
67	Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunology, 2011, 12, 770-777.	7.0	251
68	Nucleolin Associates with the Human Cytomegalovirus DNA Polymerase Accessory Subunit UL44 and Is Necessary for Efficient Viral Replication. Journal of Virology, 2010, 84, 1771-1784.	1.5	66
69	Lipid Metabolism and HCV Infection. Viruses, 2010, 2, 1195-1217.	1.5	43
70	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	13.5	717
71	Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. Journal of General Virology, 2010, 91, 122-132.	1.3	96
72	Initiation of Hepatitis C Virus Infection Requires the Dynamic Microtubule Network. Journal of Biological Chemistry, 2009, 284, 13778-13791.	1.6	64

#	Article	IF	CITATIONS
73	Subcellular localizations of the hepatitis C virus alternate reading frame proteins. Virus Research, 2009, 139, 106-110.	1.1	7
74	Hepatitis C Virus Core Protein Induces Lipid Droplet Redistribution in a Microtubule―and Dyneinâ€Dependent Manner. Traffic, 2008, 9, 1268-1282.	1.3	194
75	Maturation of Hepatitis C Virus Core Protein by Signal Peptide Peptidase Is Required for Virus Production. Journal of Biological Chemistry, 2008, 283, 16850-16859.	1.6	78
76	Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. Journal of General Virology, 2008, 89, 1569-1578.	1.3	31
77	Visualization of Double-Stranded RNA in Cells Supporting Hepatitis C Virus RNA Replication. Journal of Virology, 2008, 82, 2182-2195.	1.5	157
78	The Lipid Droplet Binding Domain of Hepatitis C Virus Core Protein Is a Major Determinant for Efficient Virus Assembly. Journal of Biological Chemistry, 2007, 282, 37158-37169.	1.6	218
79	Expression of the alternative reading frame protein of Hepatitis C virus induces cytokines involved in hepatic injuries. Journal of General Virology, 2007, 88, 1149-1162.	1.3	30
80	Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. Journal of General Virology, 2007, 88, 2204-2213.	1.3	225
81	Structural Determinants That Target the Hepatitis C Virus Core Protein to Lipid Droplets. Journal of Biological Chemistry, 2006, 281, 22236-22247.	1.6	188
82	Hepatitis C Virus Core Protein Acts as a trans-Modulating Factor on Internal Translation Initiation of the Viral RNA. Journal of Biological Chemistry, 2005, 280, 17737-17748.	1.6	39
83	Hepatitis C Virus Core Protein Is a Dimeric Alpha-Helical Protein Exhibiting Membrane Protein Features. Journal of Virology, 2005, 79, 11353-11365.	1.5	128
84	The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Research, 2004, 32, 2623-2631.	6.5	104
85	Unusual Multiple Recoding Events Leading to Alternative Forms of Hepatitis C Virus Core Protein from Genotype 1b. Journal of Biological Chemistry, 2003, 278, 45785-45792.	1.6	72