Emmanuel Ibarboure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy. ACS Nano, 2011, 5, 1122-1140.	7.3	441
2	Supramolecular Structure Characterization of Cellulose II Nanowhiskers Produced by Acid Hydrolysis of Cellulose I Substrates. Biomacromolecules, 2012, 13, 570-578.	2.6	199
3	Selfâ€Assembly of Thermally Responsive Amphiphilic Diblock Copolypeptides into Spherical Micellar Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 4257-4260.	7.2	136
4	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of N arboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	7.2	129
5	Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials, 2013, 34, 2157-2166.	5.7	108
6	Janus-Type Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2008, 130, 11662-11676.	6.6	80
7	Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir, 2009, 25, 6493-6499.	1.6	76
8	Polymersome Popping by Lightâ€induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie - International Edition, 2017, 56, 1566-1570.	7.2	71
9	Synthesis and self-assembly of "tree-like―amphiphilic glycopolypeptides. Chemical Communications, 2012, 48, 8353.	2.2	64
10	Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). Soft Matter, 2017, 13, 627-637.	1.2	57
11	Monocore <i>vs.</i> multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Molecular Systems Design and Engineering, 2017, 2, 629-639.	1.7	54
12	Fabrication of Honeycomb-Structured Porous Surfaces Decorated with Glycopolymers. Langmuir, 2010, 26, 8552-8558.	1.6	52
13	Synthesis of Donorâ^'Acceptor Multiblock Copolymers Incorporating Fullerene Backbone Repeat Units. Macromolecules, 2010, 43, 6033-6044.	2.2	51
14	Polypeptide Nanoparticles Obtained from Emulsion Polymerization of Amino Acid <i>N</i> -Carboxyanhydrides. Journal of the American Chemical Society, 2019, 141, 12522-12526.	6.6	50
15	Fully bio-based poly(l-lactide)-b-poly(ricinoleic acid)-b-poly(l-lactide) triblock copolyesters: investigation of solid-state morphology and thermo-mechanical properties. Polymer Chemistry, 2013, 4, 3357.	1.9	47
16	Liposomes in Polymersomes: Multicompartment System with Temperature-Triggered Release. Langmuir, 2017, 33, 7079-7085.	1.6	47
17	Asymmetric Hybrid Polymer–Lipid Giant Vesicles as Cell Membrane Mimics. Advanced Science, 2018, 5, 1700453.	5.6	45
18	Main-Chain Fullerene Polymers for Photovoltaic Devices. Macromolecules, 2009, 42, 3549-3558.	2.2	44

2

#	Article	IF	CITATIONS
19	Selective Ring-Opening Polymerization of Glycidyl Methacrylate: Toward the Synthesis of Cross-Linked (Co)polyethers with Thermoresponsive Properties. Macromolecules, 2011, 44, 6356-6364.	2.2	42
20	Synthesis and selfâ€assembly in water of coilâ€rodâ€coil amphiphilic block copolymers with central l€â€conjugated sequence. Journal of Polymer Science Part A, 2008, 46, 4602-4616.	2.5	35
21	Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A, 2009, 47, 2262-2271.	2.5	32
22	Adhesives based on polyurethane graft multiblock copolymers: Tack, rheology and first morphological analyses. International Journal of Adhesion and Adhesives, 2009, 29, 1-8.	1.4	32
23	Encapsidation of RNA–Polyelectrolyte Complexes with Amphiphilic Block Copolymers: Toward a New Self-Assembly Route. Journal of the American Chemical Society, 2012, 134, 20189-20196.	6.6	29
24	Nanostructured polymer composite nanoparticles synthesized in a single step via simultaneous ROMP and ATRP under microemulsion conditions. Journal of Polymer Science Part A, 2009, 47, 4014-4027.	2.5	27
25	Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(dimethylsiloxane)-b-poly(ethylene oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of Their Ability to Form Hybrid Polymer/Lipid Vesicles. Polymers, 2019, 11, 2013.	2.0	27
26	Aqueous ROPISA of α-amino acid <i>N</i> -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry, 2021, 12, 6242-6251.	1.9	27
27	Fullerene-capped copolymers for bulk heterojunctions: device stability and efficiency improvements. Journal of Materials Chemistry A, 2015, 3, 18207-18221.	5.2	26
28	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie, 2020, 132, 632-636.	1.6	26
29	pH responsive surfaces with nanoscale topography. Journal of Polymer Science Part A, 2010, 48, 2982-2990.	2.5	25
30	Synthesis of PEDOT Nano-objects Using Poly(vinyl alcohol)-Based Reactive Stabilizers in Aqueous Dispersion. Macromolecules, 2008, 41, 8964-8970.	2.2	24
31	Hydrosoluble dendritic poly(ethylene oxide)s with zinc tetraphenylporphyrin branching points as photosensitizers. Polymer Chemistry, 2013, 4, 1903.	1.9	24
32	Structured multistimuliâ€responsive functional polymer surfaces obtained by interfacial diffusion of amphiphilic block copolymers. Journal of Polymer Science Part A, 2010, 48, 1952-1961.	2.5	23
33	Nano-Encapsulation of Plitidepsin: In Vivo Pharmacokinetics, Biodistribution, and Efficacy in a Renal Xenograft Tumor Model. Pharmaceutical Research, 2014, 31, 983-991.	1.7	21
34	Spatiotemporal Dynamic Assembly/Disassembly of Organelleâ€Mimics Based on Intrinsically Disordered Proteinâ€Polymer Conjugates. Advanced Science, 2021, 8, e2102508.	5.6	21
35	Insights into <scp>C</scp> arbopol gel formulations: Microscopy analysis of the microstructure and the influence of polyol additives. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
36	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie, 2017, 129, 1588-1592.	1.6	18

#	Article	IF	CITATIONS
37	Structured Assemblies of Ferromagnetic Particles through Covalent Immobilization on Functionalized Polymer Surfaces Obtained by Surface Segregation. Langmuir, 2007, 23, 6879-6882.	1.6	17
38	Synthesis of polynorborneneâ€poly(<i>tert</i> â€butyl acrylate) nanoparticles with original morphologies by tandem ROMP and ATRP in microemulsion. Journal of Polymer Science Part A, 2011, 49, 1471-1482.	2.5	16
39	Rapid and controlled synthesis of hydrophobic polyethers by monomer activation. Pure and Applied Chemistry, 2012, 84, 2103-2111.	0.9	15
40	Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers, 2020, 12, 637.	2.0	15
41	Supramolecular structures from self-assembled poly(γ-benzyl-l-glutamate)–polydimethylsiloxane–poly(γ-benzyl-l-glutamate) triblock copolypeptides in thin films. European Polymer Journal, 2010, 46, 891-899.	2.6	13
42	Main-chain poly(fullerene) multiblock copolymers as organic photovoltaic donor–acceptors and stabilizers. Journal of Materials Chemistry A, 2017, 5, 7533-7544.	5.2	12
43	Self-assembled core–shell micelles from peptide-b-polymer molecular chimeras towards structure–activity relationships. Faraday Discussions, 2013, 166, 83.	1.6	11
44	Synthesis of polyamide 6 with aramid units by combination of anionic ring-opening and condensation reactions. European Polymer Journal, 2018, 102, 231-237.	2.6	11
45	Membrane reinforcement in giant hybrid polymer lipid vesicles achieved by controlling the polymer architecture. Soft Matter, 2021, 17, 83-89.	1.2	11
46	Simultaneous ROMP and ATRP in Aqueous Dispersed Media: A Straightforward Strategy to Prepare Polymer Composite Particles with Original Morphologies. Macromolecular Symposia, 2009, 281, 31-38.	0.4	10
47	Surface segregation of polypeptide-based block copolymer micelles: An approach to engineer nanostructured and stimuli responsive surfaces. European Polymer Journal, 2011, 47, 2063-2068.	2.6	10
48	Nanogels Based on Poly(vinyl acetate) for the Preparation of Patterned Porous Films. Langmuir, 2011, 27, 4290-4295.	1.6	9
49	Biofunctional micellar nanoparticles from peptide-b-polymer chimeras. Polymer Chemistry, 2013, 4, 2011.	1.9	9
50	Singleâ€step process to produce functionalized multiresponsive polymeric particles. Journal of Polymer Science Part A, 2010, 48, 3523-3533.	2.5	8
51	Organic support for ethylene polymerization based on the self-assembly in heptane of end-functionalized polyisoprene. Polymer Chemistry, 2010, 1, 1078.	1.9	8
52	Anionic polymerization of activated oxetane and its copolymerization with ethylene oxide for the synthesis of amphiphilic block copolymers. Polymer Chemistry, 2018, 9, 2660-2668.	1.9	7
53	Environmentally Responsive Particles: From Superhydrophobic Particle Films to Water-Dispersible Microspheres. Langmuir, 2010, 26, 18617-18620.	1.6	5
54	Obtention of Giant Unilamellar Hybrid Vesicles by Electroformation and Measurement of their Mechanical Properties by Micropipette Aspiration. Journal of Visualized Experiments, 2020, , .	0.2	5

#	Article	IF	CITATIONS
55	Polyisoprene-based block copolymers as supports for metallocene and post-metallocene catalytic systems toward ethylene polymerization. New Journal of Chemistry, 2011, 35, 2322.	1.4	4
56	Hybrid polymer/lipid vesicles: Influence of polymer architecture and molar mass on line tension. Biophysical Journal, 2022, 121, 61-67.	0.2	3
57	Visualization of arborescent architecture of polystyrenes prepared by raftâ€based initiatorâ€monomer polymerization using atomic force microscopy. Journal of Polymer Science Part A, 2012, 50, 1238-1247.	2.5	2
58	Ϊ‰-Dimethyl ammonium tetrakis-pentafluorophenyl borate polyisoprene as an organic template for alkylated metallocenes toward the synthesis of polyethylene beads. Polymer Chemistry, 2012, 3, 1133.	1.9	1
59	Low-temperature amino-based catalyst activation for on-demand polyurethane synthesis. Polymer Journal, 2020, 52, 45-49.	1.3	1
60	Titelbild: Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 517-517.	1.6	0