Alain Penicaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731766/publications.pdf

Version: 2024-02-01

88 papers 4,950 citations

172207 29 h-index 70 g-index

92 all docs 92 docs citations 92 times ranked 6249 citing authors

#	Article	IF	CITATIONS
1	Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling. Journal of Carbon Research, 2022, 8, 10.	1.4	О
2	Magnetic Ordering in Ultrasmall Potassium Ferrite Nanoparticles Grown on Graphene Nanoflakes. ACS Applied Materials & Interfaces, 2022, 14, 3130-3142.	4.0	4
3	Burn Them Right! Determining the Optimal Temperature for the Purification of Carbon Materials by Combustion. Journal of Carbon Research, 2022, 8, 31.	1.4	3
4	The role of functionalization on the colloidal stability of aqueous fullerene C60 dispersions prepared with fullerides. Carbon, 2021, 173, 1041-1047.	5.4	10
5	Intense Raman D Band without Disorder in Flattened Carbon Nanotubes. ACS Nano, 2021, 15, 596-603.	7.3	44
6	Chainlike Structure Formed in Iodine Monochloride Graphite Intercalation Compounds. Journal of Physical Chemistry C, 2021, 125, 23383-23389.	1.5	3
7	Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale, 2020, 12, 20165-20170.	2.8	34
8	Size Control of Nanographene Supported Iron Oxide Nanoparticles Enhances Their Electrocatalytic Performance for the Oxygen Reduction and Oxygen Evolution Reactions. Journal of Physical Chemistry C, 2019, 123, 20774-20780.	1.5	13
9	Thermal Oxidation of Carbonaceous Nanomaterials Revisited: Evidence of Mechanism Changes. Angewandte Chemie, 2019, 131, 16159-16163.	1.6	6
10	Thermal Oxidation of Carbonaceous Nanomaterials Revisited: Evidence of Mechanism Changes. Angewandte Chemie - International Edition, 2019, 58, 16013-16017.	7.2	7
11	Anchoring conductive polymeric monomers on single-walled carbon nanotubes: towards covalently linked nanocomposites. New Journal of Chemistry, 2019, 43, 10482-10490.	1.4	6
12	Titelbild: Thermal Oxidation of Carbonaceous Nanomaterials Revisited: Evidence of Mechanism Changes (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131, 16085-16085.	1.6	0
13	Highly Conducting, Sustainable, Nanographitic Rubber Composites. ACS Omega, 2018, 3, 1367-1373.	1.6	16
14	Graphenide Solutions: A Chemical Platform for Nanoparticle–Nanocarbon Composites. Chemistry - A European Journal, 2018, 24, 16246-16250.	1.7	8
15	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	1.6	9
16	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	7.2	135
17	Hydroxide Ions Stabilize Open Carbon Nanotubes in Degassed Water. ACS Nano, 2018, 12, 8606-8615.	7.3	7
18	Determining the structure of graphene-based flakes from their morphotype. Carbon, 2017, 115, 128-133.	5.4	10

#	Article	IF	Citations
19	Conductive graphene coatings synthesized from graphenide solutions. Carbon, 2017, 121, 217-225.	5.4	11
20	Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials. 2D Materials, 2017, 4, 025039.	2.0	146
21	From Food Waste to Efficient Bifunctional Nonprecious Electrocatalyst. Chemistry - A European Journal, 2017, 23, 15283-15288.	1.7	8
22	Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon, 2017, 111, 142-149.	5.4	32
23	Surfactant-free single-layer graphene in water. Nature Chemistry, 2017, 9, 347-352.	6.6	175
24	Raman Signatures of Single Layer Graphene Dispersed in Degassed Water, "â€~Eau de Grapheneâ€â€™. Journa of Physical Chemistry C, 2016, 120, 28204-28214.	al 1.5	25
25	â€Eau de grapheneâ€from a KC ₈ graphite intercalation compound prepared by a simple mixing of graphite and molten potassium. Physica Status Solidi - Rapid Research Letters, 2016, 10, 895-899.	1.2	17
26	Single layer nano graphene platelets derived from graphite nanofibres. Nanoscale, 2016, 8, 8810-8818.	2.8	19
27	High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. ACS Nano, 2016, 10, 5293-5303.	7.3	64
28	Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30964-30971.	4.0	41
29	Transparent electrodes made from carbon nanotube polyelectrolytes and application to acidic environments. Journal of Materials Research, 2015, 30, 2009-2017.	1.2	9
30	Optical signatures of bulk and solutions of KC8 and KC24. Journal of Applied Physics, 2015, 118, 044304.	1.1	8
31	Transparent Carbon Nanotube Network for Efficient Electrochemiluminescence Devices. Chemistry - A European Journal, 2015, 21, 12640-12645.	1.7	50
32	Graphene/nickel nanoparticles composites from graphenide solutions. Journal of Colloid and Interface Science, 2015, 453, 28-35.	5.0	15
33	Reductive dismantling and functionalization of carbon nanohorns. Chemical Communications, 2015, 51, 5017-5019.	2.2	18
34	Resonant Raman scattering of graphite intercalation compounds KC ₈ , KC ₂₄ , and KC ₃₆ . Journal of Raman Spectroscopy, 2014, 45, 219-223.	1.2	15
35	Concentrated solutions of individualized single walled carbon nanotubes. Carbon, 2014, 67, 360-367.	5.4	20
36	Solubilization of Fullerenes, Carbon Nanotubes, and Graphene. Topics in Current Chemistry, 2014, 348, 1-35.	4.0	3

#	Article	IF	Citations
37	Conductivity of transparent electrodes made from interacting nanotubes. Applied Physics Letters, 2013, 103, 263106.	1.5	13
38	Deconstructing Graphite: Graphenide Solutions. Accounts of Chemical Research, 2013, 46, 129-137.	7.6	99
39	Solutions of fully exfoliated individual graphene flakes in low boiling point solvents. Soft Matter, 2012, 8, 7882.	1.2	46
40	Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter, 2011, 7, 7998.	1.2	38
41	Raman Doping Profiles of Polyelectrolyte SWNTs in Solution. ACS Nano, 2011, 5, 9892-9897.	7.3	20
42	Graphene solutions. Chemical Communications, 2011, 47, 5470-5472.	2.2	78
43	Dissolution and alkylation of industrially produced multi-walled carbon nanotubes. Carbon, 2011, 49, 170-175.	5.4	20
44	Stoichiometric control of single walled carbon nanotubes functionalization. Journal of Materials Chemistry, 2010, 20, 4385.	6.7	49
45	Solutions of Negatively Charged Graphene Sheets and Ribbons. Journal of the American Chemical Society, 2008, 130, 15802-15804.	6.6	444
46	Singling out the Electrochemistry of Individual Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2008, 130, 7393-7399.	6.6	99
47	Covalent Functionalization of Carbon Nanotubes Through Organometallic Reduction and Electrophilic Attack. Journal of Nanoscience and Nanotechnology, 2007, 7, 3509-3513.	0.9	19
48	Substantial Improvement of Nanotube Processability by Freeze-Drying. Journal of Nanoscience and Nanotechnology, 2007, 7, 2633-2639.	0.9	19
49	Mild dissolution of carbon nanotubes: Composite carbon nanotube fibres from polyelectrolyte solutions. Composites Science and Technology, 2007, 67, 795-797.	3.8	27
50	Raman Studies of Solutions of Single-Wall Carbon Nanotube Salts. Journal of Physical Chemistry B, 2006, 110, 3949-3954.	1.2	28
51	Dissolution Douce of Single Walled Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.3	4
52	Spontaneous Dissolution of a Single-Wall Carbon Nanotube Salt. Journal of the American Chemical Society, 2005, 127, 8-9.	6.6	238
53	Low-Temperature Phase Transitions in a Biphenylâ^'Fullerene Single Crystal: A Raman Study. Journal of Physical Chemistry B, 2003, 107, 4904-4911.	1.2	4
54	Local ferromagnetism in microporous carbon with the structural regularity of zeolite Y. Physical Review B, 2003, 68, .	1.1	73

#	Article	IF	CITATIONS
55	Supramolecular fullerene chemistry: synthesis, crystal structure and potassium intercalation of [(C60)][(C6H5)2]. Journal of Materials Chemistry, 2002, 12, 913-918.	6.7	9
56	X-ray scattering study of the phase transitions in crystalline fullerene-biphenyl C 60 [(C 6 H 5) 2]. European Physical Journal B, 2002, 26, 29-34.	0.6	0
57	Characterization of Six Isomers of [84]Fullerene C84by Electrochemistry, Electron Spin Resonance Spectroscopy, and Molecular Energy Levels Calculations. Journal of Physical Chemistry A, 2001, 105, 4627-4632.	1.1	38
58	A simple method to make carbon nanotubes fibers. AIP Conference Proceedings, 2001, , .	0.3	1
59	Metal-Insulator and Structural Phase Transition Observed by ESR Spectroscopy and X-Ray Diffraction inKC60. Physical Review Letters, 2001, 86, 4346-4349.	2.9	13
60	Novel infinite three-dimensional network of neutral fullerene molecules in (C60)8(twin-TDAS)6. Acta Crystallographica Section B: Structural Science, 2000, 56, 497-500.	1.8	2
61	Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science, 2000, 290, 1331-1334.	6.0	1,703
62	Ordering phenomena in C -tetraphenylphosphonium bromide. European Physical Journal B, 2000, 15, 445-450.	0.6	1
63	Nature of the magnetic ground state in the A1C60 series. European Physical Journal Special Topics, 2000, 10, Pr3-205-Pr3-210.	0.2	3
64	Title is missing!. Journal of Chemical Crystallography, 1998, 28, 529-537.	0.5	9
65	Matrix isolation of fullerene-derived CO2 at ambient temperature. Chemical Physics Letters, 1998, 295, 481-486.	1.2	16
66	Electrochemical and ESR Studies of Higher Fullerene Radical-Anions (C ₇₆ ,) Tj ETQq0 0 0 rgBT /Over743-750.	lock 10 Tf 0.6	50 307 Td (C 2
67	Building Solids with Buckminsterfullerene (C60). Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 731-741.	0.6	6
68	Fullerene radicals, electrochemistry and electron spin resonance: Part A: Anomalous rotational dependence of the ESR signals of single crystals of [C[sub 70]][I][(C[sub 6]H[sub 5])[sub 4]P][sub 2] Part B: Electrochemical and ESR characterization of mono-anionic radicals of four minor isomers of C[sub 84]: [84]C[sub 1], [84]C[sub s](V), [84]D[sub 2d](I) and [84]D[sub 2](III), , 1998, , .		0
69	The minor isomers and IR spectrum of [84] fullerene. Journal of the Chemical Society Perkin Transactions II, 1997, , 1907-1910.	0.9	64
70	Electrochemical generation of the higher fullerene radicals C76-, C78- and C84- under oxygen- and moisture-free conditions and their observation by EPR. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3119-3123.	1.7	10
71	(Acetonitrile-N)(η5-cyclopentadienyl)bis(triphenylphosphine-P)ruthenium(II) Tetrafluoroborate. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 301-302.	0.4	6
72	Single crystal synthesis of [(C6H5)4P]2[C70][I] by electrocrystallization and experimental determination of the g-value anisotropy of C70•- and C60•- at 4.2 K. Solid State Communications, 1995, 96, 147-150.	0.9	31

#	Article	IF	CITATIONS
73	Buckminsterfulleride(1-) salts: synthesis, EPR, and the Jahn-Teller distortion of C60 [Erratum to document cited in CA119:116920]. Journal of the American Chemical Society, 1994, 116, 6484-6484.	6.6	6
74	Buckminsterfulleride(1-) salts: synthesis, EPR, and the Jahn-Teller distortion of C60 Journal of the American Chemical Society, 1993, 115, 5212-5217.	6.6	187
75	Novel formation of a linear trinuclear ferric complex containing a .muoxo bis(.muacetato) and a .muhydroxo bis(.muacetato) bridge. Inorganic Chemistry, 1993, 32, 3583-3584.	1.9	35
76	Electrocrystallizing C60: synthesis, single crystal x-ray structure, and magnetic (ESR, SQUID) characterization of [(C6H5)4P]2[C60][I]x. Journal of the American Chemical Society, 1993, 115, 10392-10393.	6.6	82
77	Hydrogen-bond tuning of macroscopic transport properties from the neutral molecular component site along the sries of metallic organic-inorganic solvates (BEDT-TTF)4Re6Se5Cl9.[guest], [guest = DMF, THF, dioxane]. Journal of the American Chemical Society, 1993, 115, 4101-4112.	6.6	119
78	C60 with Metalloporphyrins. Materials Research Society Symposia Proceedings, 1992, 247, 307.	0.1	1
79	Improved chromatographic separation and purification of C60 and C70 fullerenes. Journal of the Chemical Society Chemical Communications, 1992, , 936.	2.0	24
80	C60.bul with coordination compounds. (Tetraphenylporphinato)chromium(III) fulleride. Journal of the American Chemical Society, 1991, 113, 6698-6700.	6.6	103
81	Observation of large third-order optical susceptibility in (BEDT-TTF)4Re6Se5Cl9. Chemical Physics, 1990, 144, 299-303.	0.9	6
82	Preparation, structure, and magnetic properties of a ternary tetrathiafulvalenium salt based on a paramagnetic hexanuclear niobium cluster halide: (TTF+)2[(Nb6Cl18)3-][(C2H5)4N+][CH3CN], a unique molecular rock salt with channels incorporating a neutral organic molecule. Chemistry of Materials, 1990, 2, 117-123.	3.2	23
83	Novel redox properties of the paramagnetic hexanuclear niobium cluster halide Nb6Cl183- and the preparation, structures, and conducting and magnetic properties of its one-dimensional mixed-valence tetramethyltetra(selena and thia)fulvalenium salts: [TMTSF and TMTTF]5[Nb6Cl18].cntdot.(CH2Cl2)0.5. Chemistry of Materials. 1990. 2, 123-132.	3.2	30
84	Uniform, non-interacting antiferromagnetic chains of spins in the 1:1 bis-ethylenedithiotetrathiafulvalenium salt of a monovalent hexarhenium chalcohalide cluster anion: (BEDT-TTF)+ \hat{A} ·(Re6Se5Cl9) \hat{a} ° \hat{A} ·(C3H7ON)2. Synthetic Metals, 1989, 32, 25-32.	2.1	16
85	Mixed-valence bis(ethylenedithio)tetrathiafulvalenium (BEDT-TTF) monolayers sandwiched between extended close-packed Keggin-type molecular metal oxide cluster arrays: synthesis, unprecedented acentric structure, and preliminary conducting and e.s.r. properties of (BEDT-TTF)8SiW12O40. Journal of the Chemical Society Chemical Communications. 1989 1373-1374.	2.0	53
86	A conductive tetramethyltetraselenafulvalenium salt based on a divalent oxalato-bridged bis-(Tetrafluorometallate) complex: (TMTSF)3[Ti2F8(C2O4)]. Synthetic Metals, 1988, 22, 201-207.	2.1	17
87	Cation-radical salts of the paramagnetic hexanuclear octahedral halide cluster Nb6Cl183â^'; preparation, crystal structure, transport and magnetic properties of D5(Nb6Cl18)(CH2Cl2)0.5		