Gustavo de Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous miscible organic solvent treated NiTi layered double hydroxide De-NOx photocatalysts. Chemical Engineering Journal, 2022, 429, 132361.	6.6	11
2	Use of LDH- chromate adsorption co-product as an air purification photocatalyst. Chemosphere, 2022, 286, 131812.	4.2	11
3	Mechanochemically designed bismuth-based halide perovskites for efficient photocatalytic oxidation of vanillyl alcohol. Journal of Materials Chemistry A, 2022, 10, 11298-11305.	5.2	16
4	Surface energy transfer in hybrid halide perovskite/plasmonic Au nanoparticle composites. Nanoscale, 2021, 13, 14221-14227.	2.8	1
5	Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells. Matter, 2021, 4, 635-653.	5.0	109
6	Aâ€Site Cation Engineering in 2D Ruddlesden–Popper (BA) 2 (MA 1―x A x) 2 Pb 3 I 10 Perovskite Films. Advanced Optical Materials, 2021, 9, 2100114.	3.6	9
7	Insight into the role of copper in the promoted photocatalytic removal of NO using Zn2-xCuxCr-CO3 layered double hydroxide. Chemosphere, 2021, 275, 130030.	4.2	14
8	Amphiphilic polymers for aggregation-induced emission at air/liquid interfaces. Journal of Colloid and Interface Science, 2021, 596, 324-331.	5.0	8
9	Insight into the Role of Guanidinium and Cesium in Triple Cation Lead Halide Perovskites. Solar Rrl, 2021, 5, 2100586.	3.1	6
10	Cr3+ substituted Zn-Al layered double hydroxides as UV–Vis light photocatalysts for NO gas removal from the urban environment. Science of the Total Environment, 2020, 706, 136009.	3.9	26
11	Photocatalytic Production of Vanillin over CeO _{<i>x</i>} and ZrO ₂ Modified Biomass-Templated Titania. Industrial & Engineering Chemistry Research, 2020, 59, 17085-17093.	1.8	18
12	Linewidth and writing resolution. , 2020, , 351-384.		0
13	Effects of Fe3+ substitution on Zn-Al layered double hydroxides for enhanced NO photochemical abatement. Chemical Engineering Journal, 2020, 387, 124110.	6.6	30
14	Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite. Chemistry of Materials, 2020, 32, 4024-4037.	3.2	28
15	Synthesis and photophysical studies of an indigo derivative: N-octyl-7,7′-diazaindigo. RSC Advances, 2020, 10, 42014-42020.	1.7	0
16	Mechanochemical synthesis of three double perovskites: Cs ₂ AgBiBr ₆ , (CH ₃ NH ₃) ₂ TlBiBr ₆ and Cs ₂ AgSbBr ₆ . Nanoscale, 2019, 11, 16650-16657.	2.8	65
17	Bipolar luminescent azaindole derivative exhibiting aggregation-induced emission for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1222-1227.	2.7	9
18	5,10-Dihydrobenzo[<i>a</i>]indolo[2,3- <i>c</i>]carbazoles as Novel OLED Emitters. Journal of Physical Chemistry B, 2019, 123, 1400-1411.	1.2	13

Gustavo de Miguel

#	Article	IF	CITATIONS
19	Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120.	10.2	85
20	Catalyzed Microwave-Assisted Preparation of Carbon Quantum Dots from Lignocellulosic Residues. ACS Sustainable Chemistry and Engineering, 2018, 6, 7200-7205.	3.2	88
21	Tenfold increase in efficiency from a reference blue OLED. Journal of Luminescence, 2018, 199, 13-18.	1.5	6
22	Synthesis of carbon-based fluorescent polymers driven by catalytically active magnetic bioconjugates. Green Chemistry, 2018, 20, 225-229.	4.6	34
23	Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy, 2018, 50, 220-228.	8.2	79
24	Mechanochemical synthesis of one-dimensional (1D) hybrid perovskites incorporating polycyclic aromatic spacers: highly fluorescent cation-based materials. Journal of Materials Chemistry C, 2018, 6, 7677-7682.	2.7	14
25	Towards the photophysical studies of humin by-products. Chemical Communications, 2017, 53, 7015-7017.	2.2	14
26	Simple Donor–Acceptor Luminogen Based on an Azaindole Derivative as Solid-State Emitter for Organic Light-Emitting Devices. ACS Energy Letters, 2017, 2, 2653-2658.	8.8	9
27	Improving the Spatial Resolution in Direct Laser Writing Lithography by Using a Reversible Cationic Photoinitiator. Journal of Physical Chemistry C, 2017, 121, 16970-16977.	1.5	8
28	Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.	19.8	445
29	Selfâ€Assembling Azaindole Organogel for Organic Lightâ€Emitting Devices (OLEDs). Advanced Functional Materials, 2017, 27, 1702176.	7.8	15
30	Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy. Optical Materials Express, 2016, 6, 3169.	1.6	16
31	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie - International Edition, 2016, 55, 14972-14977.	7.2	142
32	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie, 2016, 128, 15196-15201.	1.6	18
33	7,7′-Diazaisoindigo: a novel building block for organic electronics. Journal of Materials Chemistry C, 2016, 4, 1208-1214.	2.7	28
34	Linewidth and Writing Resolution. , 2016, , 190-220.		5
35	Selective fluorescence functionalization of dye-doped polymerized structures fabricated by direct laser writing (DLW) lithography. Nanoscale, 2015, 7, 20164-20170.	2.8	5
36	Aggregation and structural study of the monolayers formed by an amphiphilic thiapentacarbocyanine. RSC Advances, 2015, 5, 32227-32238.	1.7	1

Gustavo de Miguel

#	Article	IF	CITATIONS
37	λ/20 axial control in 25D polymerized structures fabricated with DLW lithography. Optics Express, 2015, 23, 24850.	1.7	9
38	UV–Vis Reflection–Absorption Spectroscopy at air–liquid interfaces. Advances in Colloid and Interface Science, 2015, 225, 134-145.	7.0	14
39	A New Efficient Implementation of 2PE-STED Microscopy. Biophysical Journal, 2014, 106, 605a.	0.2	1
40	Precise Control of Intramolecular Chargeâ€Transport: The Interplay of Distance and Conformational Effects. Chemistry - A European Journal, 2013, 19, 7575-7586.	1.7	21
41	Real-Time Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells with Iodide and Cobalt Electrolytes. Journal of Physical Chemistry C, 2013, 117, 11906-11919.	1.5	33
42	Host–Guest Complexation of [60]Fullerenes and Porphyrins Enabled by "Click Chemistry― Chemistry - A European Journal, 2013, 19, 11374-11381.	1.7	28
43	Femto- to Millisecond Photophysical Characterization of Indole-Based Squaraines Adsorbed on TiO ₂ Nanoparticle Thin Films. Journal of Physical Chemistry C, 2012, 116, 12137-12148.	1.5	39
44	Femto to millisecond observations of indole-based squaraine molecules photodynamics in solution. Physical Chemistry Chemical Physics, 2012, 14, 1796-1805.	1.3	23
45	Relating the Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells to the Molecular Structure of the Sensitizers and to the Presence of Additives. Journal of Physical Chemistry C, 2012, 116, 22157-22168.	1.5	23
46	Photophysics of H- and J-Aggregates of Indole-Based Squaraines in Solid State. Journal of Physical Chemistry C, 2012, 116, 9379-9389.	1.5	62
47	Topological and Conformational Effects on Electron Transfer Dynamics in Porphyrin-[60]Fullerene Interlocked Systems. Chemistry of Materials, 2012, 24, 2472-2485.	3.2	43
48	Triazole Bridges as Versatile Linkers in Electron Donor–Acceptor Conjugates. Journal of the American Chemical Society, 2011, 133, 13036-13054.	6.6	109
49	J-aggregation of a sulfonated amphiphilic porphyrin at the air–water interface as a function of pH. Journal of Colloid and Interface Science, 2011, 356, 775-782.	5.0	18
50	Electron Donor–Acceptor Interactions in Regioselectively Synthesized exTTF ₂ –C ₇₀ (CF ₃ 10 Dyads. Chemistry - A European Journal, 2010, 16, 5343-5353.	1.7	20
51	[2]Catenanes Decorated with Porphyrin and [60]Fullerene Groups: Design, Convergent Synthesis, and Photoinduced Processes. Journal of the American Chemical Society, 2010, 132, 3847-3861.	6.6	121
52	Activating Multistep Charge-Transfer Processes in Fullereneâ^'Subphthalocyanineâ^'Ferrocene Molecular Hybrids as a Function of Ï€â^'Ï€ Orbital Overlap. Journal of the American Chemical Society, 2010, 132, 16488-16500.	6.6	78
53	Convergent Synthesis and Photoinduced Processes in Multi-Chromophoric Rotaxanes. Journal of Physical Chemistry B, 2010, 114, 14408-14419.	1.2	26
54	Control over Charge Transfer through Molecular Wires by Temperature and Chemical Structure Modifications. ACS Nano, 2010, 4, 6449-6462.	7.3	32

GUSTAVO DE MIGUEL

#	Article	IF	CITATIONS
55	Controlling the molecular organization of porphyrins by hosting in amphiphilic matrix. Journal of Porphyrins and Phthalocyanines, 2009, 13, 597-605.	0.4	5
56	Dendritic Porphyrin–Fullerene Conjugates: Efficient Lightâ€Harvesting and Chargeâ€Transfer Events. Chemistry - A European Journal, 2009, 15, 12223-12233.	1.7	54
57	Oxygen storage/release in cobalt porphyrin electrodeposited films. Electrochimica Acta, 2009, 54, 1791-1797.	2.6	7
58	Soret emission from water-soluble porphyrin thin films: effect on the electroluminescence response. Journal of Materials Chemistry, 2009, 19, 4255.	6.7	21
59	Effect of the Molecular Methylene Blue Aggregation on the Mesoscopic Domain Morphology in Mixed Monolayers with Dimyristoylâ^'Phosphatidic Acid. Journal of Physical Chemistry C, 2009, 113, 5711-5720.	1.5	19
60	Synthesis, Characterization, and Photoinduced Electron Transfer Processes of Orthogonal Ruthenium Phthalocyanineâ^'Fullerene Assemblies. Journal of the American Chemical Society, 2009, 131, 10484-10496.	6.6	105
61	Tunable Soretâ€Band Splitting of an Amphiphilic Porphyrin by Surface Pressure. ChemPhysChem, 2008, 9, 1511-1513.	1.0	18
62	Dis-aggregation of an insoluble porphyrin in a calixarene matrix: characterization of aggregate modes by extended dipole model. Physical Chemistry Chemical Physics, 2008, 10, 1569.	1.3	19
63	Segregation of lipid in Ir-dye/DMPA mixed monolayers as strategy to fabricate 2D supramolecular nanostructures at the air–water interface. Journal of Materials Chemistry, 2008, 18, 1681.	6.7	9
64	Molecular organization of a water-insoluble iridium(III) complex in mixed monolayers. Journal of Colloid and Interface Science, 2007, 315, 278-286.	5.0	14
65	Improvement of optical gas sensing using LB films containing a water insoluble porphyrin organized in a calixarene matrix. Journal of Materials Chemistry, 2007, 17, 2914-2920.	6.7	20
66	J-Aggregation of a Water-Soluble Tetracationic Porphyrin in Mixed LB Films with a Calix[8]arene Carboxylic Acid Derivative. Langmuir, 2007, 23, 3794-3801.	1.6	28
67	Reversible binding of molecular dioxygen to CoTSPP electrodeposited films from aqueous basic media. Electrochemistry Communications, 2006, 8, 638-642.	2.3	4
68	Conformational Changes of a Calix[8]arene Derivative at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2005, 109, 3998-4006.	1.2	24