
Gail L Matters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aptamer-Targeted Calcium Phosphosilicate Nanoparticles for Effective Imaging of Pancreatic and Prostate Cancer. International Journal of Nanomedicine, 2021, Volume 16, 2297-2309.	6.7	7
2	Preferential uptake of antibody targeted calcium phosphosilicate nanoparticles by metastatic triple negative breast cancer cells in co-cultures of human metastatic breast cancer cells plus bone osteoblasts. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102383.	3.3	5
3	Conductance-Based Biophysical Distinction and Microfluidic Enrichment of Nanovesicles Derived from Pancreatic Tumor Cells of Varying Invasiveness. Analytical Chemistry, 2019, 91, 10424-10431.	6.5	28
4	Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.	12.1	26
5	Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. PLoS ONE, 2018, 13, e0206759.	2.5	81
6	Utilizing Peptide Ligand GPCRs to Image and Treat Pancreatic Cancer. Biomedicines, 2018, 6, 65.	3.2	6
7	Bio-distribution of near infrared imaging agent loaded targeted drug nanoparticle carriers in highly fibrotic pancreatic tumor determined using multiphoton and harmonic generation imaging. , 2018, , .		0
8	The use of nanoparticulates to treat breast cancer. Nanomedicine, 2017, 12, 2367-2388.	3.3	74
9	Effective encapsulation and biological activity of phosphorylated chemotherapeutics in calcium phosphosilicate nanoparticles for the treatment of pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2313-2324.	3.3	11
10	A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma. Nucleic Acid Therapeutics, 2017, 27, 23-35.	3.6	34
11	"Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS ONE, 2017, 12, e0184451.	2.5	51
12	Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25, ddw300.	2.9	24
13	Germline Mutation of the CCK Receptor: A Novel Biomarker for Pancreas Cancer. Clinical and Translational Gastroenterology, 2016, 7, e134.	2.5	5
14	Macrophage-Tumor Cell Fusions from Peripheral Blood of Melanoma Patients. PLoS ONE, 2015, 10, e0134320.	2.5	76
15	Distribution of Cholecystokinin-B Receptor Genotype Between Patients With Pancreatic Cancer and Controls and Its Impact on Survival. Pancreas, 2015, 44, 236-242.	1.1	10
16	Cholecystokinin Receptor Antagonist Halts Progression of Pancreatic Cancer Precursor Lesions and Fibrosis in Mice. Pancreas, 2014, 43, 1050-1059.	1.1	36
17	Cholecystokinin Mediates Progression and Metastasis of Pancreatic Cancer Associated with Dietary Fat. Digestive Diseases and Sciences, 2014, 59, 1180-1191.	2.3	30
18	Novel strategies for managing pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 14717.	3.3	15

GAIL L MATTERS

#	Article	IF	CITATIONS
19	Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin. American Journal of Physiology - Renal Physiology, 2013, 305, F714-F726.	2.7	28
20	A Speculative Role for Stromal Gastrin Signaling in Development and Dissemination of Pancreatic Ductal Adenocarcinoma. Pancreatic Disorders & Therapy, 2013, 01, 003.	0.3	0
21	Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. American Journal of Physiology - Renal Physiology, 2012, 302, G1244-G1252.	3.4	26
22	A single nucleotide polymorphism of the cholecystokinin-B receptor predicts risk for pancreatic cancer. Cancer Biology and Therapy, 2012, 13, 164-174.	3.4	16
23	Role of endogenous cholecystokinin on growth of human pancreatic cancer. International Journal of Oncology, 2011, 38, 593-601.	3.3	23
24	Balance of meprin A and B in mice affects the progression of experimental inflammatory bowel disease. American Journal of Physiology - Renal Physiology, 2011, 300, G273-G282.	3.4	39
25	Bioconjugation of Calcium Phosphosilicate Composite Nanoparticles for Selective Targeting of Human Breast and Pancreatic Cancers <i>In Vivo</i> . ACS Nano, 2010, 4, 1279-1287.	14.6	133
26	Meprins Affect Epithelial Barrier Function by Cleaving Tight Junction Proteins. FASEB Journal, 2010, 24, 683.1.	0.5	0
27	Growth of Human Pancreatic Cancer Is Inhibited by Down-Regulation of Gastrin Gene Expression. Pancreas, 2009, 38, e151-e161.	1.1	30
28	The Opioid Antagonist Naltrexone Improves Murine Inflammatory Bowel Disease. Journal of Immunotoxicology, 2008, 5, 179-187.	1.7	24
29	Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities. Biological Chemistry, 2007, 388, 1163-1172.	2.5	15
30	Meprin Î ² metalloprotease gene polymorphisms associated with diabetic nephropathy in the Pima Indians. Human Genetics, 2005, 118, 12-22.	3.8	35
31	Inhibitors of Polyamine Biosynthesis Decrease the Expression of the Metalloproteases Meprin α and MMP-7 in Hormone-independent Human Breast Cancer Cells. Clinical and Experimental Metastasis, 2005, 22, 331-339.	3.3	47
32	Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract infections and cancer. FEBS Letters, 2005, 579, 3317-3322.	2.8	75
33	Metastasis of hormone-independent breast cancer to lung and bone is decreased by $\hat{l}\pm$ -difluoromethylornithine treatment. Breast Cancer Research, 2005, 7, R819-27.	5.0	24
34	Expression of meprins in health and disease. Current Topics in Developmental Biology, 2003, 54, 145-166.	2.2	24
35	Marked Differences between Metalloproteases Meprin A and B in Substrate and Peptide Bond Specificity. Journal of Biological Chemistry, 2001, 276, 13248-13255.	3.4	103
36	Structure of the mouse metalloprotease meprin β gene (Mep1b): Alternative splicing in cancer cells. Gene, 2000, 248, 77-87.	2.2	10

GAIL L MATTERS

#	Article	IF	CITATIONS
37	Meprin B: Transcriptional and posttranscriptional regulation of the meprin β metalloproteinase subunit in human and mouse cancer cells. Apmis, 1999, 107, 19-27.	2.0	15
38	Expression and regulation of the meprin ? gene in human cancer cells. Molecular Carcinogenesis, 1999, 25, 169-178.	2.7	42
39	Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, ?-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant Molecular Biology, 1995, 27, 607-617.	3.9	37
40	Blue-Light Regulated Expression of Genes for Two Early Steps of Chlorophyll Biosynthesis in Chlamydomonas Reinhardtii. , 1995, , 2845-2850.		0
41	Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Molecular Biology, 1994, 24, 617-629.	3.9	54
42	Biosynthesis of ?-aminolevulinic acid from glutamate by Sulfolobus solfataricus. Archives of Microbiology, 1994, 161, 272-276.	2.2	6
43	A gene/pseudogene tandem duplication encodes a cysteine-rich protein expressed during zygote development in Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 1992, 232, 81-88.	2.4	31
44	Synthesis of Isozymes of Superoxide Dismutase in Maize Leaves in Response to O3, SO2and Elevated O2. Journal of Experimental Botany, 1987, 38, 842-852.	4.8	44
45	Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize. Biochimica Et Biophysica Acta - General Subjects, 1986, 882, 29-38.	2.4	82
46	Changes in plant gene expression during stress. Genesis, 1986, 7, 167-175.	2.1	46
47	Effect of elevated temperature on catalase and superoxide dismutase during maize development. Differentiation, 1986, 30, 190-196.	1.9	22
48	Soluble starch synthases and starch branching enzymes from cotyledons of smooth- and wrinkled-seeded lines of Pisum sativum L Biochemical Genetics, 1982, 20, 833-848.	1.7	33
49	Starch synthases and starch branching enzymes from Pisum sativum. Phytochemistry, 1981, 20, 1805-1809.	2.9	27