
Matthew G Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1731478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain, 2005, 115, 71-83.	2.0	597
2	Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Molecular Psychiatry, 2014, 19, 699-709.	4.1	529
3	Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, Behavior, and Immunity, 2007, 21, 47-59.	2.0	502
4	A Role for Proinflammatory Cytokines and Fractalkine in Analgesia, Tolerance, and Subsequent Pain Facilitation Induced by Chronic Intrathecal Morphine. Journal of Neuroscience, 2004, 24, 7353-7365.	1.7	387
5	mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiology of Aging, 2006, 27, 717-722.	1.5	291
6	Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain, Behavior, and Immunity, 2012, 26, 337-345.	2.0	257
7	Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, Behavior, and Immunity, 2010, 24, 19-30.	2.0	250
8	Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain, Behavior, and Immunity, 2015, 45, 171-179.	2.0	207
9	Time course of hippocampal IL-1 Î ² and memory consolidation impairments in aging rats following peripheral infection. Brain, Behavior, and Immunity, 2009, 23, 46-54.	2.0	199
10	Intracisternal Interleukin-1 Receptor Antagonist Prevents Postoperative Cognitive Decline and Neuroinflammatory Response in Aged Rats. Journal of Neuroscience, 2012, 32, 14641-14648.	1.7	196
11	Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain, Behavior, and Immunity, 2015, 48, 1-7.	2.0	178
12	Stress Induces the Danger-Associated Molecular Pattern HMGB-1 in the Hippocampus of Male Sprague Dawley Rats: A Priming Stimulus of Microglia and the NLRP3 Inflammasome. Journal of Neuroscience, 2015, 35, 316-324.	1.7	177
13	Danger Signals and Inflammasomes: Stress-Evoked Sterile Inflammation in Mood Disorders. Neuropsychopharmacology, 2017, 42, 36-45.	2.8	160
14	Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain, 2006, 126, 294-308.	2.0	150
15	Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. Journal of Neuroscience Methods, 2006, 151, 121-130.	1.3	149
16	Amygdala Regulation of Immediate-Early Gene Expression in the Hippocampus Induced by Contextual Fear Conditioning. Journal of Neuroscience, 2006, 26, 1616-1623.	1.7	137
17	Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology, 2014, 40, 191-200.	1.3	136
18	Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger. Brain, Behavior, and Immunity, 2013, 33, 1-6.	2.0	132

MATTHEW G FRANK

#	Article	IF	CITATIONS
19	Little Exercise, Big Effects: Reversing Aging and Infection-Induced Memory Deficits, and Underlying Processes. Journal of Neuroscience, 2011, 31, 11578-11586.	1.7	128
20	Stress-induced neuroinflammatory priming: A liability factor in the etiology of psychiatric disorders. Neurobiology of Stress, 2016, 4, 62-70.	1.9	112
21	The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain, Behavior, and Immunity, 2016, 55, 215-224.	2.0	106
22	The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. Journal of Neuroscience, 2016, 36, 7946-7956.	1.7	103
23	Aging sensitizes rapidly isolated hippocampal microglia to LPS ex vivo. Journal of Neuroimmunology, 2010, 226, 181-184.	1.1	88
24	Stress- and glucocorticoid-induced priming of neuroinflammatory responses: Potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain, Behavior, and Immunity, 2011, 25, S21-S28.	2.0	87
25	Microglia: Neuroimmune-sensors of stress. Seminars in Cell and Developmental Biology, 2019, 94, 176-185.	2.3	86
26	SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain, Behavior, and Immunity, 2022, 100, 267-277.	2.0	86
27	Release of Plasmid DNA-Encoding IL-10 from PLGA Microparticles Facilitates Long-Term Reversal of Neuropathic Pain Following a Single Intrathecal Administration. Pharmaceutical Research, 2010, 27, 841-854.	1.7	85
28	Pain Intensity and Duration Can Be Enhanced by Prior Challenge: Initial Evidence Suggestive of a Role of Microglial Priming. Journal of Pain, 2010, 11, 1004-1014.	0.7	85
29	Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain, Behavior, and Immunity, 2018, 70, 257-267.	2.0	85
30	Uncontrollable, But Not Controllable, Stress Desensitizes 5-HT _{1A} Receptors in the Dorsal Raphe Nucleus. Journal of Neuroscience, 2011, 31, 14107-14115.	1.7	74
31	IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344×BN F1 rats. Brain, Behavior, and Immunity, 2010, 24, 254-262.	2.0	72
32	Antidepressants Augment Natural Killer Cell Activity: In vivo and in vitro. Neuropsychobiology, 1999, 39, 18-24.	0.9	70
33	Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain, Behavior, and Immunity, 2013, 32, 112-121.	2.0	70
34	Aging-related changes in neuroimmune-endocrine function: Implications for hippocampal-dependent cognition. Hormones and Behavior, 2012, 62, 219-227.	1.0	66
35	Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain, Behavior, and Immunity, 2018, 73, 352-363.	2.0	66
36	Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiology of Aging, 2015, 36, 1483-1495.	1.5	62

MATTHEW G FRANK

#	Article	IF	CITATIONS
37	The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain, Behavior, and Immunity, 2016, 51, 99-108.	2.0	60
38	Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology, 2016, 66, 82-90.	1.3	58
39	Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 69, 62-73.	2.0	58
40	Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 73, 133-148.	2.0	57
41	Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain, Behavior, and Immunity, 2007, 21, 660-667.	2.0	54
42	Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. ENeuro, 2016, 3, ENEURO.0113-16.2016.	0.9	54
43	Prior exposure to glucocorticoids potentiates lipopolysaccharide induced mechanical allodynia and spinal neuroinflammation. Brain, Behavior, and Immunity, 2011, 25, 1408-1415.	2.0	52
44	Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiology of Aging, 2018, 71, 105-114.	1.5	45
45	Memory impairments in healthy aging: Role of aging-induced microglial sensitization. , 2010, 1, 212-231.		44
46	The permissive role of glucocorticoids in neuroinflammatory priming. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 300-305.	1.2	39
47	Immunological priming potentiates non-viral anti-inflammatory gene therapy treatment of neuropathic pain. Gene Therapy, 2009, 16, 1210-1222.	2.3	31
48	Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Molecular and Cellular Neurosciences, 2018, 89, 71-79.	1.0	30
49	Characterization of the temporo-spatial effects of chronic bilateral intrahippocampal cannulae on interleukin-1β. Journal of Neuroscience Methods, 2007, 161, 265-272.	1.3	28
50	A novel platform for in vivo detection of cytokine release within discrete brain regions. Brain, Behavior, and Immunity, 2018, 71, 18-22.	2.0	28
51	Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: A role for potentiated NLRP3 inflammasome activation. Brain, Behavior, and Immunity, 2020, 89, 32-42.	2.0	28
52	Age at onset of major depressive disorder predicts reductions in NK cell number and activity. Journal of Affective Disorders, 2002, 71, 159-167.	2.0	25
53	Could Probiotics Be Used to Mitigate Neuroinflammation?. ACS Chemical Neuroscience, 2019, 10, 13-15.	1.7	25
54	Prior laparotomy or corticosterone potentiates lipopolysaccharide-induced fever and sickness behaviors. Journal of Neuroimmunology, 2011, 239, 53-60.	1.1	23

MATTHEW G FRANK

#	Article	IF	CITATIONS
55	Glucocorticoids mediate stress induction of the alarmin HMGB1 and reduction of the microglia checkpoint receptor CD200R1 in limbic brain structures. Brain, Behavior, and Immunity, 2019, 80, 678-687.	2.0	18
56	IL-1RA injected intra-cisterna magna confers extended prophylaxis against lipopolysaccharide-induced neuroinflammatory and sickness responses. Journal of Neuroimmunology, 2012, 252, 33-39.	1.1	17
57	Stress-induced glucocorticoids suppress the antisense molecular regulation of FGF-2 expression. Psychoneuroendocrinology, 2007, 32, 376-384.	1.3	16
58	Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain, Behavior, and Immunity, 2021, 91, 212-229.	2.0	12
59	Levels of Monocyte Reactive Oxygen Species Are Associated with Reduced Natural Killer Cell Activity in Major Depressive Disorder. Neuropsychobiology, 2001, 44, 1-6.	0.9	10
60	Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-11² protein in dorsal hippocampus. Brain, Behavior, and Immunity, 2020, 90, 70-80.	2.0	9
61	The role of hepatic and splenic macrophages in E. coli-induced memory impairments in aged rats. Brain, Behavior, and Immunity, 2015, 43, 60-67.	2.0	7
62	Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. Journal of Alzheimer's Disease, 2020, 78, 965-987.	1.2	4
63	170. Characterization of the neuroendocrine system in healthy aged rats. Brain, Behavior, and Immunity, 2012, 26, S47.	2.0	0