
Khubab Shaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of joining techniques for thermoplastic composite materials. Journal of Thermoplastic Composite Materials, 2023, 36, 3417-3454.	2.6	14
2	Cellulosic Fillers Extracted from Argyreia Speciose Waste: A Potential Reinforcement for Composites to Enhance Properties. Journal of Natural Fibers, 2022, 19, 4210-4222.	1.7	27
3	Effect of weaving patterns on damage resistance of 3D woven jointless T and H shaped reinforcements. Mechanics of Advanced Materials and Structures, 2022, 29, 104-117.	1.5	18
4	Development and characterization of chemical and fire resistant jute/unsaturated polyester composites. Journal of the Textile Institute, 2022, 113, 484-493.	1.0	13
5	Double face fabrics: a tailorable solution for puncture resistant applications. Journal of the Textile Institute, 2022, 113, 1197-1205.	1.0	3
6	Thermo-physiological Comfort of Woven Fabrics Made from Different Cellulosic Yarns. Journal of Natural Fibers, 2022, 19, 4050-4062.	1.7	3
7	Development of functional (flameâ€retardant and antiâ€bacterial) and hybrid (carbonâ€glass/epoxy) composites with improved low velocity impact response. Polymer Composites, 2022, 43, 889-905.	2.3	14
8	Wood and Agriculture Waste Fibers. SpringerBriefs in Materials, 2022, , 45-55.	0.1	1
9	Lignocellulosic Fiber Structure. SpringerBriefs in Materials, 2022, , 11-19.	0.1	1
10	Performance of Green Composites. SpringerBriefs in Materials, 2022, , 57-65.	0.1	0
11	Green Composite Solutions. SpringerBriefs in Materials, 2022, , 1-9.	0.1	0
12	Thermal properties of woven fabric as a function of its structural parameters: experimentation and modeling. Research Journal of Textile and Apparel, 2022, ahead-of-print, .	0.6	1
13	Effect of picking sequence on thermo-physiological comfort of bilayer woven fabrics. Research Journal of Textile and Apparel, 2022, ahead-of-print, .	0.6	0
14	Effect of PEEK Particles on Physiomechanical Behavior of Carbon/Epoxy Composite. International Journal of Polymer Science, 2022, 2022, 1-12.	1.2	7
15	Mechanical performance of flame retardant and antibacterial glass-carbon/epoxy hybrid composites for furniture applications. Journal of Industrial Textiles, 2022, 51, 5822S-5846S.	1.1	5
16	Effect of poly ether ether ketone particles on vâ€notched shear and drop weight impact behavior of carbon/epoxy composite. Polymer Composites, 2022, 43, 3219-3227.	2.3	13
17	Impact Performance of Three-dimensional Woven Composites with Novel Binding Yarn Patterns. Journal of Natural Fibers, 2022, 19, 14461-14476.	1.7	9

18 Optimization of Knitted Structures for E-Textiles Applications. , 2022, 15, .

1

#	Article	IF	CITATIONS
19	Effect of weave architecture and glass microspheres percentage on the low velocity impact response of hemp/green epoxy composites. Journal of Composite Materials, 2021, 55, 2179-2195.	1.2	20
20	Mechanical characterization. , 2021, , 269-298.		0
21	Effect of Fabric Structure on the Performance of 3D Woven Pressure Sensor. Fibers and Polymers, 2021, 22, 847-853.	1.1	4
22	Thermal expansion coefficient: A macro-scale indicator of particle filtration in composites fabricated by resin infusion. Polymer Testing, 2021, 96, 107083.	2.3	3
23	Effect of the stuffer yarns on the mechanical performance of novel 3D woven green composites. Composite Structures, 2021, 269, 114023.	3.1	18
24	Life-cycle assessment of ballistic vest. , 2021, , 341-358.		0
25	Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview. Composite Interfaces, 2021, 28, 1221-1256.	1.3	17
26	Bio-composites: Eco-friendly Substitute of Glass Fiber Composites. , 2021, , 151-175.		1
27	Multifunctional Electrically Conductive Copper Electroplated Fabrics Sensitizes by In-Situ Deposition of Copper and Silver Nanoparticles. Nanomaterials, 2021, 11, 3097.	1.9	12
28	Tailoring the properties of leno woven fabrics by varying the structure. Mechanics of Advanced Materials and Structures, 2020, 27, 1865-1872.	1.5	6
29	Experimental and numerical investigation of reduction in shape distortion for angled composite parts. International Journal of Material Forming, 2020, 13, 897-906.	0.9	12
30	Effect of glass microspheres and fabric weave structure on mechanical performance of hemp/green epoxy composites. Polymer Composites, 2020, 41, 4771-4787.	2.3	21
31	Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products, 2020, 152, 112518.	2.5	51
32	Impact of waste fibers on the mechanical performance of concrete composites. Journal of the Textile Institute, 2020, 111, 1632-1640.	1.0	24
33	Comparison of Mechanical Behavior of Biaxial, Unidirectional and Standard Woven Fabric Reinforced Composites. Fibers and Polymers, 2020, 21, 1308-1315.	1.1	12
34	Bio-composites: Eco-friendly Substitute of Glass Fiber Composites. , 2020, , 1-25.		16
35	Fibers for Protective Textiles. Topics in Mining, Metallurgy and Materials Engineering, 2020, , 65-91.	1.4	3
36	Drop Weight Impact and Tension-Tension Loading Fatigue Behaviour of Jute/Carbon Fibers Reinforced Epoxy-based Hybrid Composites. Porrime, 2020, 44, 610-617.	0.0	4

#	Article	IF	CITATIONS
37	Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite. Cellulose, 2019, 26, 9057-9069.	2.4	59
38	Influence of silica fillers on failure modes of glass/vinyl ester composites under different mechanical loadings. Engineering Fracture Mechanics, 2019, 218, 106605.	2.0	21
39	Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites. Journal of Mechanical Science and Technology, 2019, 33, 4217-4226.	0.7	49
40	Reduction in process-induced shape distortion of C-shaped composite parts using micro silica particles. International Journal of Advanced Manufacturing Technology, 2019, 103, 4747-4754.	1.5	12
41	Performance of novel auxetic woven fabrics produced using Helical Auxetic Yarn. Materials Research Express, 2019, 6, 085703.	0.8	18
42	Development of composites, reinforced by novel 3D woven orthogonal fabrics with enhanced auxeticity. Journal of Industrial Textiles, 2019, 49, 676-690.	1.1	26
43	Optimization of 3D woven preform for improved mechanical performance. Journal of Industrial Textiles, 2019, 48, 1206-1227.	1.1	31
44	A study on the interdependence of fabric pore size and its mechanical and comfort properties. Journal of Natural Fibers, 2019, 16, 795-805.	1.7	7
45	Effect of fabric structural design on the thermal properties of woven fabrics. Thermal Science, 2019, 23, 3059-3066.	0.5	7
46	Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 2018, 47, 2153-2183.	1.1	292
47	Effect of silica particle loading on shape distortion in glass/vinyl ester-laminated composite plates. Journal of the Textile Institute, 2018, 109, 656-664.	1.0	14
48	Development & Characterization of Green Composites Using Novel 3D Woven Preforms. Applied Composite Materials, 2018, 25, 747-759.	1.3	25
49	Development and characterization of three-dimensional woven fabric for ultra violet protection. International Journal of Clothing Science and Technology, 2018, 30, 536-547.	0.5	3
50	Mechanical Behaviour of Hybrid Composites Developed from Textile Waste. Fibres and Textiles in Eastern Europe, 2018, 26, 46-52.	0.2	18
51	Recycling of warp size materials and comparison of yarn mechanical properties sized with recycled materials and virgin materials. Journal of the Textile Institute, 2017, 108, 84-88.	1.0	6
52	Study of dynamic compressive behaviour of aramid and ultrahigh molecular weight polyethylene composites using Split Hopkinson Pressure Bar. Journal of Composite Materials, 2017, 51, 81-94.	1.2	21
53	Comparison of compression properties of stretchable knitted fabrics and bi-stretch woven fabrics for compression garments. Journal of the Textile Institute, 2017, 108, 522-527.	1.0	19
54	Investigating the mechanical behavior of composites made from textile industry waste. Journal of the Textile Institute, 2017, 108, 835-839.	1.0	43

#	Article	IF	CITATIONS
55	Optimizing the performance of woven protective gloves using grey relational analysis. Journal of the Textile Institute, 2017, 108, 1715-1719.	1.0	10
56	Interdependence of moisture, mechanical properties, and hydrophobic treatment of jute fibre-reinforced composite materials. Journal of the Textile Institute, 2017, 108, 1768-1776.	1.0	35
57	Simultaneous Optimization of Woven Fabric Properties Using Principal Component Analysis. Journal of Natural Fibers, 2017, 14, 846-857.	1.7	16
58	Investigating the effect of material and weave design on comfort properties of bilayer-woven fabrics. Journal of the Textile Institute, 2017, 108, 1319-1326.	1.0	27
59	Investigation of mechanical behavior of woven/knitted hybrid composites. Journal of the Textile Institute, 2017, 108, 1510-1517.	1.0	20
60	A Study on the Twist Loss in Weft Yarn during Air Jet Weaving. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	3
61	Preparation of Conductive Polyethylene Terephthalate Yarns by Deposition of Silver & Copper Nanoparticles. Fibres and Textiles in Eastern Europe, 2017, 25, 25-30.	0.2	11
62	Fabric manufacturing. ChemistrySelect, 2016, 1, .	0.7	4
63	Textile raw materials. ChemistrySelect, 2016, 1, .	0.7	6
64	Modelling the Effect of Weave Structure and Fabric Thread Density on Mechanical and Comfort Properties of Woven Fabrics. Autex Research Journal, 2016, 16, 160-164.	0.6	7
65	Modeling the effect of weave structure and fabric thread density on the barrier effectiveness of woven surgical gowns. Journal of the Textile Institute, 2016, 107, 873-878.	1.0	14
66	Bioactive woven flax-based composites: Development and characterisation. Journal of Industrial Textiles, 2016, 46, 549-561.	1.1	31
67	Effect of woven fabric structure on the air permeability and moisture management properties. Journal of the Textile Institute, 2016, 107, 596-605.	1.0	31
68	Static and Dynamic Mechanical Properties of Cotton/Epoxy Green Composites. Fibres and Textiles in Eastern Europe, 2016, 24, 105-111.	0.2	28
69	4. Fabric Manufacturing. , 2016, , 47-82.		Ο
70	2. Textile Raw Materials. , 2016, , 7-24.		0
71	Development Of 3D Woven Fabric Based Pressure Switch. Autex Research Journal, 2015, 15, 148-152.	0.6	4
72	A Statistical Approach for Obtaining the Controlled Woven Fabric Width. Autex Research Journal, 2015, 15, 275-279.	0.6	8

#	Article	IF	CITATIONS
73	Numerical analysis of self-healing composite materials. , 2015, , .		Ο
74	Development and characterization of three-dimensional woven-shaped preforms and their associated composites. Journal of Reinforced Plastics and Composites, 2015, 34, 2018-2028.	1.6	22
75	Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. Journal of Reinforced Plastics and Composites, 2015, 34, 2059-2068.	1.6	40
76	Development of seersucker fabrics using single warp beam and modelling of their stretch-recovery behaviour. Journal of the Textile Institute, 2015, 106, 1154-1160.	1.0	10
77	Prediction of warp and weft yarn crimp in cotton woven fabrics. Journal of the Textile Institute, 2015, 106, 1180-1189.	1.0	10
78	Structural Textile Design. , 0, , .		12