
Lorenzo Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rootstocks for Commercial Peach Production in the Southeastern United States: Current Research, Challenges, and Opportunities. Horticulturae, 2022, 8, 602.	2.8	9
2	Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, 2021, 8, .	4.6	33
3	In Planta Localization of Endophytic Cordyceps fumosorosea in Carrizo Citrus. Microorganisms, 2021, 9, 219.	3.6	5
4	Greenhouse Evaluation of Pinewood Biochar Effects on Nutrient Status and Physiological Performance in Muscadine Grape (Vitis rotundifolia L.). Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 277-285.	1.0	3
5	Hydraulic segmentation does not protect stems from acute water loss during fire. Tree Physiology, 2021, 41, 1785-1793.	3.1	6
6	Effect of Propagation Systems and Indole-3-Butyric Acid Potassium Salt (K-IBA) Concentrations on the Propagation of Peach Rootstocks by Stem Cuttings. Plants, 2021, 10, 1151.	3.5	4
7	Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact, 2020, 20, 100264.	4.5	20
8	Impact of a Soil Conditioner Integrated into Fertilization Scheme on Orange and Lemon Seedling Physiological Performances. Plants, 2020, 9, 812.	3.5	3
9	Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 2020, 10, 938.	3.0	179
10	Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. Plant Physiology and Biochemistry, 2020, 148, 70-79.	5.8	16
11	Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 2019, 135, 160-166.	5.8	255
12	Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environmental Pollution, 2019, 246, 381-389.	7.5	52
13	Ecophysiology of Plants in Dry Environments. , 2019, , 71-100.		6
14	Effects of Soil Salinity on Citrus Rootstock â€~US-942' Physiology and Anatomy. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 787-792.	1.0	13
15	Citrus Rootstock Propagation: Traditional Techniques and Recent Advances. Edis, 2019, 2019, 4.	0.1	2
16	The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environmental Science and Pollution Research, 2018, 25, 930-939.	5.3	80
17	Mutual effects and <i>in planta</i> accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (<i>Glycine max</i> (L.) Merr.). Environmental Science: Nano, 2018, 5, 150-157.	4.3	91
18	Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, 2018, 156, 248-260.	4.2	12

LORENZO ROSSI

#	Article	IF	CITATIONS
19	Initial Sterilization of Soil Affected Interactions of Cerium Oxide Nanoparticles and Soybean Seedlings (<i>Glycine max</i> (L.) Merr.) in a Greenhouse Study. ACS Sustainable Chemistry and Engineering, 2018, 6, 10307-10314.	6.7	12
20	Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism. Journal of Plant Physiology, 2017, 215, 122-131.	3.5	5
21	Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229, 132-138.	7.5	134
22	Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, 2017, 4, 1086-1094.	4.3	101
23	Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in <i>Glycine max</i> (L.) Merr Environmental Science & Technology, 2017, 51, 12815-12824.	10.0	88
24	Overexpression of a synthetic insect–plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis. Planta, 2016, 244, 215-230.	3.2	19
25	Multigenerational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact, 2016, 1, 46-54.	4.5	51
26	Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). Journal of Plant Physiology, 2016, 204, 8-15.	3.5	69
27	The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L Environmental Pollution, 2016, 219, 28-36.	7.5	171
28	Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in <i>Brassica rapa</i> . Environmental Science & Technology, 2016, 50, 6793-6802.	10.0	75
29	Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae, 2015, 192, 38-46.	3.6	37
30	Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant and Soil, 2013, 372, 567-579.	3.7	37