Xin-Long Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces. Engineering With Computers, 2022, 38, 1939-1953.	3.5	4
2	An extremumâ€preserving finite volume scheme for threeâ€temperature radiation diffusion equations. Mathematical Methods in the Applied Sciences, 2022, 45, 4643-4660.	1.2	1
3	Modeling and numerical simulation of surfactant systems with incompressible fluid flows on surfaces. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114450.	3.4	18
4	Difference finite element method for the 3D steady Stokes equations. Applied Numerical Mathematics, 2022, 173, 418-433.	1.2	4
5	Second order unconditional linear energy stable, rotational velocity correction method for unsteady incompressible magneto-hydrodynamic equations. Computers and Fluids, 2022, 236, 105300.	1.3	7
6	Recovery-Based Error Estimator for Natural Convection Equations Based on Defect-Correction Methods. Entropy, 2022, 24, 255.	1.1	0
7	Two-level Newton iterative method based on nonconforming finite element discretization for 2D/3D stationary MHD equations. Computers and Fluids, 2022, 238, 105372.	1.3	2
8	Uniform Stability and Convergence with Respect to \$\$(u , mu , s, 1-sigma)\$\$ of the Three Iterative Finite Element Solutions for the 3D Steady MHD Equations. Journal of Scientific Computing, 2022, 90, 1.	1.1	7
9	Optimal Convergence Analysis of Two-Level Nonconforming Finite Element Iterative Methods for 2D/3D MHD Equations. Entropy, 2022, 24, 587.	1.1	2
10	Model order reduction method based on (r)POD-ANNs for parameterized time-dependent partial differential equations. Computers and Fluids, 2022, 241, 105481.	1.3	6
11	A stabilized difference finite element method for the 3D steady Stokes equations. Applied Mathematics and Computation, 2022, 430, 127270.	1.4	2
12	A second-order maximum bound principle preserving operator splitting method for the Allen–Cahn equation with applications in multi-phase systems. Mathematics and Computers in Simulation, 2022, 202, 36-58.	2.4	10
13	Numerical Study on an RBF-FD Tangent Plane Based Method for Convection–Diffusion Equations on Anisotropic Evolving Surfaces. Entropy, 2022, 24, 857.	1.1	4
14	A non-intrusive neural network model order reduction algorithm for parameterized parabolic PDEs. Computers and Mathematics With Applications, 2022, 119, 59-67.	1.4	2
15	An accurate and parallel method with post-processing boundedness control for solving the anisotropic phase-field dendritic crystal growth model. Communications in Nonlinear Science and Numerical Simulation, 2022, 115, 106717.	1.7	10
16	An efficient maximum bound principle preserving p-adaptive operator-splitting method for three-dimensional phase field shape transformation model. Computers and Mathematics With Applications, 2022, 120, 78-91.	1.4	7
17	Superconvergence in H1-norm of a difference finite element method for the heat equation in a 3D spatial domain with almost-uniform mesh. Numerical Algorithms, 2021, 86, 357-395.	1.1	4
18	Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation. Journal of Scientific Computing, 2021, 86, 1.	1.1	14

#	Article	IF	CITATIONS
19	A Meshless Local Radial Point Collocation Method for Simulating the Time-Fractional Convection-Diffusion Equations on Surfaces. International Journal of Computational Methods, 2021, 18, 2150006.	0.8	2
20	Effective velocity-correction projection methods for unsteady incompressible natural convection equations. International Communications in Heat and Mass Transfer, 2021, 121, 104860.	2.9	2
21	The local tangential lifting method for moving interface problems on surfaces with applications. Journal of Computational Physics, 2021, 431, 110146.	1.9	6
22	Penalty decoupled iterative methods for the stationary natural convection equations with different Rayleigh numbers. Applied Numerical Mathematics, 2021, 163, 270-291.	1.2	2
23	Unconditionally Maximum Bound Principle Preserving Linear Schemes for the Conservative Allen–Cahn Equation with Nonlocal Constraint. Journal of Scientific Computing, 2021, 87, 1.	1.1	14
24	Variational multiscale virtual element method for the convection-dominated diffusion problem. Applied Mathematics Letters, 2021, 117, 107077.	1.5	3
25	Gradient recovery-based adaptive stabilized mixed FEM for the convection–diffusion–reaction equation on surfaces. Computer Methods in Applied Mechanics and Engineering, 2021, 380, 113798.	3.4	5
26	Fully decoupled, linear and positivity-preserving scheme for the chemotaxis–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2021, 383, 113909.	3.4	6
27	Fourth order compact FD methods for convection diffusion equations with variable coefficients. Applied Mathematics Letters, 2021, 121, 107413.	1.5	5
28	The cell-centered positivity-preserving finite volume scheme for 3D anisotropic diffusion problems on distorted meshes. Computer Physics Communications, 2021, 269, 108099.	3.0	0
29	Stabilized Integrating Factor RungeKutta Method and Unconditional Preservation of Maximum Bound Principle. SIAM Journal of Scientific Computing, 2021, 43, A1780-A1802.	1.3	36
30	Error Estimate of Unconditionally Stable and Decoupled Linear Positivity-Preserving FEM for the Chemotaxis-Stokes Equations. SIAM Journal on Numerical Analysis, 2021, 59, 3052-3076.	1.1	4
31	Parallel two-step finite element algorithm based on fully overlapping domain decomposition for the time-dependent natural convection problem. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 496-515.	1.6	9
32	An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models. Engineering With Computers, 2020, 36, 1393-1404.	3.5	11
33	H 1 â€superconvergence of finite difference method based on Q 1 â€element on quasiâ€uniform mesh for the 3D Poisson equation. Numerical Methods for Partial Differential Equations, 2020, 36, 29-48.	2.0	3
34	A positivity preserving characteristic finite element method for solving the transport and convection–diffusion–reaction equations on general surfaces. Computer Physics Communications, 2020, 247, 106941.	3.0	17
35	Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations. Numerical Methods for Partial Differential Equations, 2020, 36, 418-438.	2.0	23
36	How to obtain an accurate gradient for interface problems?. Journal of Computational Physics, 2020, 405, 109070.	1.9	8

#	Article	IF	CITATIONS
37	Novel fractional time-stepping algorithms for natural convection problems with variable density. Applied Numerical Mathematics, 2020, 151, 64-84.	1.2	8
38	The stabilized lower-order and equal-order finite element methods for the hydrostatic Stokes problems. International Communications in Heat and Mass Transfer, 2020, 111, 104391.	2.9	1
39	Method of Order Reduction for the High-Dimensional Convection-Diffusion-Reaction Equation with Robin Boundary Conditions Based on MQ RBF-FD. International Journal of Computational Methods, 2020, 17, 1950058.	0.8	2
40	An efficient time adaptivity based on chemical potential for surface Cahn–Hilliard equation using finite element approximation. Applied Mathematics and Computation, 2020, 369, 124901.	1.4	12
41	Divergence-free radial kernel for surface Stokes equations based on the surface Helmholtz decomposition. Computer Physics Communications, 2020, 256, 107408.	3.0	8
42	Crank–Nicolson Leap-Frog Time Stepping Decoupled Scheme for the Fluid–Fluid Interaction Problems. Journal of Scientific Computing, 2020, 84, 1.	1.1	5
43	Long time error estimates of IFE methods for the unsteady multi-layer porous wall model. Applied Numerical Mathematics, 2020, 156, 303-321.	1.2	2
44	A Petrov–Galerkin finite element method for simulating chemotaxis models on stationary surfaces. Computers and Mathematics With Applications, 2020, 79, 3189-3205.	1.4	7
45	A layers capturing type H-adaptive finite element method for convection–diffusion–reaction equations on surfaces. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112792.	3.4	5
46	A positivity-preserving finite volume scheme for three-temperature radiation diffusion equations. Applied Numerical Mathematics, 2020, 152, 125-140.	1.2	8
47	Numerical simulations for the predator-prey model on surfaces with lumped mass method. Engineering With Computers, 2020, 37, 2047.	3.5	4
48	A novel cell-centered finite volume scheme with positivity-preserving property for the anisotropic diffusion problems on general polyhedral meshes. Applied Mathematics Letters, 2020, 104, 106252.	1.5	4
49	An extremum-preserving finite volume scheme for convection-diffusion equation on general meshes. Applied Mathematics and Computation, 2020, 380, 125301.	1.4	0
50	On Two-Level Oseen Penalty Iteration Methods for the 2D/3D Stationary Incompressible Magnetohydronamics. Journal of Scientific Computing, 2020, 83, 1.	1.1	9
51	Numerical simulation of binary fluid–surfactant phase field model coupled with geometric curvature on the curved surface. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113123.	3.4	29
52	On high-order compact schemes for the multidimensional time-fractional Schrödinger equation. Advances in Difference Equations, 2020, 2020, .	3.5	0
53	A gradientÂrecovery–based adaptive finite element method for convectionâ€diffusionâ€reaction equations on surfaces. International Journal for Numerical Methods in Engineering, 2019, 120, 901-917.	1.5	10
54	The characteristic RBF-FD method for the convection-diffusion-reaction equation on implicit surfaces. Numerical Heat Transfer; Part A: Applications, 2019, 75, 548-559.	1.2	13

#	Article	IF	CITATIONS
55	Least-squares RBF-FD method for the incompressible Stokes equations with the singular source. Numerical Heat Transfer; Part A: Applications, 2019, 75, 739-752.	1.2	1
56	A New Optimization Method for the Layout of Pumping Wells in Oases: Application in the Qira Oasis, Northwest China. Water (Switzerland), 2019, 11, 970.	1.2	7
57	A stabilized extremumâ€preserving scheme for nonlinear parabolic equation on polygonal meshes. International Journal for Numerical Methods in Fluids, 2019, 90, 340-356.	0.9	17
58	Analysis of the operator splitting scheme for the Cahnâ€Hilliard equation with a viscosity term. Numerical Methods for Partial Differential Equations, 2019, 35, 1949-1970.	2.0	11
59	Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Computers and Mathematics With Applications, 2019, 78, 20-34.	1.4	24
60	Recovery-based error estimator for the natural-convection problem based on penalized finite element method. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4850-4874.	1.6	0
61	Parallel two-step finite element algorithm for the stationary incompressible magnetohydrodynamic equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2709-2727.	1.6	10
62	An efficient space-time operator-splitting method for high-dimensional vector-valued Allen–Cahn equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3437-3453.	1.6	12
63	A positivity-preserving nonlinear finite volume scheme for radionuclide transport calculations in geological radioactive waste repository. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 516-534.	1.6	5
64	A compact integrated RBF method for time fractional convection–diffusion–reaction equations. Computers and Mathematics With Applications, 2019, 77, 2263-2278.	1.4	24
65	Optimal Error Estimates of Penalty Based Iterative Methods for Steady Incompressible Magnetohydrodynamics Equations with Different Viscosities. Journal of Scientific Computing, 2019, 79, 1078-1110.	1.1	20
66	Ensemble Time-Stepping Algorithm for the Convection-Diffusion Equation with Random Diffusivity. Journal of Scientific Computing, 2019, 79, 1271-1293.	1.1	16
67	A novel characteristic variational multiscale FEM for incompressible natural convection problem with variable density. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 580-601.	1.6	11
68	RBF-based meshless local Petrov Galerkin method for the multi-dimensional convection–diffusion-reaction equation. Engineering Analysis With Boundary Elements, 2019, 98, 46-53.	2.0	25
69	Investigations on several high-order ADI methods for time-space fractional diffusion equation. Numerical Algorithms, 2019, 82, 69-106.	1.1	9
70	?¹-Superconvergence of a difference finite element method based on the ?â,•?â,•conforming element on non-uniform meshes for the 3D Poisson equation. Mathematics of Computation, 2018, 87, 1659-1688.	1.1	9
71	A lifted local Galerkin method for solving the reaction–diffusion equations on implicit surfaces. Computer Physics Communications, 2018, 231, 107-113.	3.0	17
72	Multiquadric RBF-FD method for the convection-dominated diffusion problems base on Shishkin nodes. International Journal of Heat and Mass Transfer, 2018, 118, 734-745.	2.5	31

#	Article	IF	CITATIONS
73	A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations. Numerical Algorithms, 2018, 78, 277-295.	1.1	13
74	Streamline diffusion finite element method for stationary incompressible natural convection problem. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74, 519-537.	0.6	2
75	A new high-order compact ADI finite difference scheme for solving 3D nonlinear SchrĶdinger equation. Advances in Difference Equations, 2018, 2018, .	3.5	4
76	Two types of spurious oscillations at layers diminishing methods for convection–diffusion–reaction equations on surface. Numerical Heat Transfer; Part A: Applications, 2018, 74, 1387-1404.	1.2	13
77	Two-level meshless local Petrov Galerkin method for multi-dimensional nonlinear convection–diffusion equation based on radial basis function. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74, 685-698.	0.6	7
78	A novel pressure-correction projection finite element method for incompressible natural convection problem with variable density. Numerical Heat Transfer; Part A: Applications, 2018, 74, 1001-1017.	1.2	7
79	Meshless local Petrov Galerkin method for 2D/3D nonlinear convection–diffusion equations based on LS-RBF-PUM. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74, 450-464.	0.6	15
80	A novel parallel two-step algorithm based on finite element discretization for the incompressible flow problem. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73, 329-341.	0.6	15
81	The lumped mass finite element method for surface parabolic problems: Error estimates and maximum principle. Computers and Mathematics With Applications, 2018, 76, 488-507.	1.4	21
82	Fourth-Order Compact Split-Step Finite Difference Method for Solving the Two and Three-Dimensional Nonlinear SchrĶdinger Equations. Advances in Applied Mathematics and Mechanics, 2018, 10, 879-895.	0.7	2
83	Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations. Applied Mathematics and Computation, 2017, 302, 34-47.	1.4	13
84	An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Applied Mathematics and Computation, 2017, 302, 21-33.	1.4	14
85	A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen–Cahn equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 530-542.	1.6	24
86	Pressure-Correction Projection FEM for Time-Dependent Natural Convection Problem. Communications in Computational Physics, 2017, 21, 1090-1117.	0.7	24
87	The Hermitian Positive Definite Solution of the Nonlinear Matrix Equation. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18, 293-301.	0.4	2
88	Defect-correction finite element method based on Crank-Nicolson extrapolation scheme for the transient conduction-convection problem with high Reynolds number. International Communications in Heat and Mass Transfer, 2017, 81, 229-249.	2.9	6
89	Two-Level Penalty Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics Equations. Journal of Scientific Computing, 2017, 70, 1144-1179.	1.1	22
90	Second order fully discrete defectâ€correction scheme for nonstationary conductionâ€convection problem at high <scp>R</scp> eynolds number. Numerical Methods for Partial Differential Equations, 2017, 33, 681-703.	2.0	14

#	Article	IF	CITATIONS
91	Unconditionally stable Gauge–Uzawa finite element schemes for incompressible natural convection problems with variable density. Journal of Computational Physics, 2017, 348, 776-789.	1.9	24
92	H -adaptive RBF-FD method for the high-dimensional convection-diffusion equation. International Communications in Heat and Mass Transfer, 2017, 89, 139-146.	2.9	27
93	RBF-FD method for the high dimensional time fractional convection-diffusion equation. International Communications in Heat and Mass Transfer, 2017, 89, 230-240.	2.9	33
94	Error estimates of fully discrete finite element solutions for the 2D Cahn–Hilliard equation with infinite time horizon. Numerical Methods for Partial Differential Equations, 2017, 33, 742-762.	2.0	6
95	A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Applied Mathematical Modelling, 2017, 42, 462-477.	2.2	54
96	Local projection stabilized and characteristic decoupled scheme for the fluid–fluid interaction problems. Numerical Methods for Partial Differential Equations, 2017, 33, 704-723.	2.0	4
97	A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Advances in Water Resources, 2017, 110, 445-458.	1.7	46
98	Novel two-level discretization method for high dimensional semilinear elliptic problems base on RBF-FD scheme. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72, 349-360.	0.6	18
99	The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 2857-2877.	0.5	9
100	Recovery-Based Error Estimator for Stabilized Finite Element Method for the Stationary Navier–Stokes Problem. SIAM Journal of Scientific Computing, 2016, 38, A3758-A3772.	1.3	11
101	Second Order Convergence of the Interpolation based on <i></i> -Element. Numerical Mathematics, 2016, 9, 595-618.	0.6	3
102	Uniform H2-regularity of solution for the 2D Navier–Stokes/Cahn–Hilliard phase field model. Journal of Mathematical Analysis and Applications, 2016, 441, 815-829.	0.5	10
103	A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation. Applications of Mathematics, 2016, 61, 27-45.	0.9	7
104	Iterative methods in penalty finite element discretization for the steady MHD equations. Computer Methods in Applied Mechanics and Engineering, 2016, 304, 521-545.	3.4	29
105	A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks. Journal of Hydrology, 2016, 540, 1209-1222.	2.3	30
106	Implicit–explicit schemes of finite element method for the non-stationary thermal convection problems with temperature-dependent coefficients. International Communications in Heat and Mass Transfer, 2016, 76, 325-336.	2.9	15
107	An efficient two-step algorithm for steady-state natural convection problem. International Journal of Heat and Mass Transfer, 2016, 101, 387-398.	2.5	28
108	A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 217-233.	0.6	21

#	Article	IF	CITATIONS
109	Second order time–space iterative method for the stationary Navier–Stokes equations. Applied Mathematics Letters, 2016, 59, 79-86.	1.5	4
110	Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 364-376.	0.6	15
111	Generalized polynomial chaos for the convection diffusion equation with uncertainty. International Journal of Heat and Mass Transfer, 2016, 97, 289-300.	2.5	13
112	Convergence of the crank-nicolson/newton scheme for nonlinear parabolic problem. Acta Mathematica Scientia, 2016, 36, 124-138.	0.5	6
113	Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Applied Mathematical Modelling, 2016, 40, 1315-1324.	2.2	51
114	Reconstructing meteorological time series to quantify the uncertainties of runoff simulation in the ungauged Qira River Basin using data from multiple stations. Theoretical and Applied Climatology, 2016, 126, 61-76.	1.3	4
115	On uniform in time \$H^2\$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2016, 36, 5387-5400.	0.5	13
116	A Numerical Comparison of Finite Difference and Finite Element Methods for a Stochastic Differential Equation with Polynomial Chaos. East Asian Journal on Applied Mathematics, 2015, 5, 192-208.	0.4	1
117	The characteristic variational multiscale method for time dependent conduction–convection problems. International Communications in Heat and Mass Transfer, 2015, 68, 58-68.	2.9	14
118	Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China. Water (Switzerland), 2015, 7, 5657-5675.	1.2	18
119	High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion. International Journal of Heat and Mass Transfer, 2015, 84, 440-447.	2.5	15
120	A novel high-order ADI method for 3D fractionalconvection–diffusion equations. International Communications in Heat and Mass Transfer, 2015, 66, 212-217.	2.9	14
121	Highly efficient and local projection-based stabilized finite element method for natural convection problem. International Journal of Heat and Mass Transfer, 2015, 83, 357-365.	2.5	21
122	Two-level variational multiscale method based on the decoupling approach for the natural convection problem. International Communications in Heat and Mass Transfer, 2015, 61, 128-139.	2.9	18
123	An efficient two-step algorithm for the incompressible flow problem. Advances in Computational Mathematics, 2015, 41, 1059-1077.	0.8	15
124	An Efficient Algorithm with High Accuracy for Time-Space Fractional Heat Equations. Numerical Heat Transfer, Part B: Fundamentals, 2015, 67, 550-562.	0.6	11
125	An adaptive local grid refinement method for 2D diffusion equation with variable coefficients based on block-centered finite differences. Applied Mathematics and Computation, 2015, 268, 284-294.	1.4	5
126	Long Time Numerical Simulations for Phase-Field Problems Using \$p\$-Adaptive Spectral Deferred Correction Methods. SIAM Journal of Scientific Computing, 2015, 37, A271-A294.	1.3	70

#	Article	IF	CITATIONS
127	A New Variational Multiscale FEM for the Steady-State Natural Convection Problem with Bubble Stabilization. Numerical Heat Transfer; Part A: Applications, 2015, 68, 777-796.	1.2	23
128	The Spectral Collocation Method for the Stochastic Allen-Cahn Equation via Generalized Polynomial Chaos. Numerical Heat Transfer, Part B: Fundamentals, 2015, 68, 11-29.	0.6	13
129	The characteristic subgrid artificial viscosity stabilized finite element method for the nonstationary Navier–Stokes equations. International Communications in Heat and Mass Transfer, 2015, 65, 37-46.	2.9	0
130	An improved two-grid finite element method for the Steklov eigenvalue problem. Applied Mathematical Modelling, 2015, 39, 2962-2972.	2.2	7
131	Investigations on several numerical methods for the non-local Allen–Cahn equation. International Journal of Heat and Mass Transfer, 2015, 87, 111-118.	2.5	38
132	MODIFIED METHOD OF CHARACTERISTICS VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR TIME DEPENDENT NAVIER-STOKES PROBLEMS. Mathematical Modelling and Analysis, 2015, 20, 658-680.	0.7	3
133	A block-centered characteristic finite difference method for convection-dominated diffusion equation. International Communications in Heat and Mass Transfer, 2015, 61, 1-7.	2.9	31
134	\$\$H^2\$\$ H 2 -Stability of the First Order Fully Discrete Schemes for the Time-Dependent Navier–Stokes Equations. Journal of Scientific Computing, 2015, 62, 230-264.	1.1	22
135	Three Iterative Finite Element Methods for the Stationary Smagorinsky Model. East Asian Journal on Applied Mathematics, 2014, 4, 132-151.	0.4	4
136	NUMERICAL METHODS OF NEW MIXED FINITE ELEMENT SCHEME FOR SINGLE-PHASE COMPRESSIBLE FLOW. International Journal of Computational Methods, 2014, 11, 1350055.	0.8	2
137	A ROBUST HIGH-ORDER COMPACT METHOD FOR THE THREE DIMENSIONAL NONLINEAR BIHARMONIC EQUATIONS. International Journal of Computational Methods, 2014, 11, 1350065.	0.8	3
138	Two-Level Stabilized, Nonconforming Finite-Element Algorithms for the Stationary Conduction-Convection Equations. Numerical Heat Transfer, Part B: Fundamentals, 2014, 66, 211-242.	0.6	12
139	Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem. Applications of Mathematics, 2014, 59, 615-630. <mml:math <="" altimg="si72.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.9</td><td>5</td></mml:math>	0.9	5
140	overflow="scroll">< mml:mrow> < mml:msup> < mml:mrow> < mml:mi>H < mml:mrow> < mml:mrow> < mml:mi>H < mml:mrow> < mml:mrow> < mml:msup> < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si73.gif" overflow="scroll"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mi>P < mml:mrow> < mml:mrow> < mml:mi>P < mml:mrow> < mml:mrow> < mml:mi> < mml:mrow> < mml:mrow < m	2.2	8
141	Applied Mathematical Modelling, 2014, 38, 5439-5455. An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. Journal of Computational Physics, 2014, 269, 138-155.	1.9	64
142	The characteristic variational multiscale method for convection-dominated convection–diffusion–reaction problems. International Journal of Heat and Mass Transfer, 2014, 72, 461-469.	2.5	25
143	WO-GRID METHOD FOR BURGERS' EQUATION BY A NEW MIXED FINITE ELEMENT SCHEME. Mathematical Modelling and Analysis, 2014, 19, 1-17.	0.7	6
144	A new method to deduce high-order compact difference schemes for two-dimensional Poisson equation. Applied Mathematics and Computation, 2014, 230, 9-26.	1.4	19

#	Article	IF	CITATIONS
145	Second order fully discrete and divergence free conserving scheme for time-dependent conduction–convection equations. International Communications in Heat and Mass Transfer, 2014, 59, 120-129.	2.9	15
146	A new coupled high-order compact method for the three-dimensional nonlinear biharmonic equations. International Journal of Computer Mathematics, 2014, 91, 2307-2325.	1.0	3
147	A New High-Order Compact ADI Method for 3-D Unsteady Convection-Diffusion Problems with Discontinuous Coefficients. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65, 376-391.	0.6	12
148	Two-level defect-correction Oseen iterative stabilized finite element method for the stationary conduction–convection equations. International Communications in Heat and Mass Transfer, 2014, 56, 133-145.	2.9	16
149	An Oseen scheme for the conduction–convection equations based on a stabilized nonconforming method. Applied Mathematical Modelling, 2014, 38, 535-547.	2.2	19
150	Numerical simulation of the three dimensional Allen–Cahn equation by the high-order compact ADI method. Computer Physics Communications, 2014, 185, 2449-2455.	3.0	43
151	A quadratic equal-order stabilized finite element method for the conduction–convection equations. Computers and Fluids, 2013, 86, 169-176.	1.3	18
152	Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations. Frontiers of Mathematics in China, 2013, 8, 837-854.	0.4	3
153	A Fully Discrete Stabilized Mixed Finite Element Method for Parabolic Problems. Numerical Heat Transfer; Part A: Applications, 2013, 63, 755-775.	1.2	15
154	Two-level stabilized nonconforming finite element method for the Stokes equations. Applications of Mathematics, 2013, 58, 643-656.	0.9	3
155	A Novel Method to Deduce a High-Order Compact Difference Scheme for the Three-Dimensional Semilinear Convection-Diffusion Equation with Variable Coefficients. Numerical Heat Transfer, Part B: Fundamentals, 2013, 63, 425-455.	0.6	22
156	A Family of Fourth-Order and Sixth-Order Compact Difference Schemes for the Three-Dimensional Poisson Equation. Journal of Scientific Computing, 2013, 54, 97-120.	1.1	30
157	Two-level stabilized method based on Newton iteration for the steady Smagorinsky model. Nonlinear Analysis: Real World Applications, 2013, 14, 1795-1805.	0.9	18
158	A two-grid stabilized mixed finite element method for semilinear elliptic equations. Applied Mathematical Modelling, 2013, 37, 7037-7046.	2.2	10
159	Analysis of two-grid method for semi-linear elliptic equations by new mixed finite element scheme. Applied Mathematics and Computation, 2013, 219, 4826-4835.	1.4	5
160	Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier–Stokes equations. Applied Mathematical Modelling, 2013, 37, 728-741.	2.2	34
161	A stabilized finite element method for the time-dependent Stokes equations based on Crank–Nicolson Scheme. Applied Mathematical Modelling, 2013, 37, 1910-1919.	2.2	10
162	The local discontinuous Galerkin finite element method for a class of convection–diffusion equations. Nonlinear Analysis: Real World Applications, 2013, 14, 734-752.	0.9	10

#	Article	IF	CITATIONS
163	Two-level defect-correction locally stabilized finite element method for the steady Navier–Stokes equations. Nonlinear Analysis: Real World Applications, 2013, 14, 1171-1181.	0.9	19
164	Finite element method for twoâ€dimensional timeâ€fractional tricomiâ€type equations. Numerical Methods for Partial Differential Equations, 2013, 29, 1081-1096.	2.0	26
165	New High-Order Compact ADI Algorithms for 3D Nonlinear Time-Fractional Convection-Diffusion Equation. Mathematical Problems in Engineering, 2013, 2013, 1-11.	0.6	8
166	Numerical Study on Several Stabilized Finite Element Methods for the Steady Incompressible Flow Problem with Damping. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	0
167	Error estimates for twoâ€level penalty finite volume method for the stationary Navier–Stokes equations. Mathematical Methods in the Applied Sciences, 2013, 36, 1918-1928.	1.2	5
168	Stabilized Crank-Nicolson/Adams-Bashforth Schemes for Phase Field Models. East Asian Journal on Applied Mathematics, 2013, 3, 59-80.	0.4	82
169	Godunov Method for Stefan Problems with Enthalpy Formulations. East Asian Journal on Applied Mathematics, 2013, 3, 107-119.	0.4	15
170	Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7, 679-695.	0.6	61
171	H ¹ -Stability and Convergence of the FE, FV and FD Methods for an Elliptic Equation. East Asian Journal on Applied Mathematics, 2013, 3, 154-170.	0.4	2
172	A stabilised nonconforming finite element method for steady incompressible flows. International Journal of Computational Fluid Dynamics, 2012, 26, 133-144.	0.5	6
173	A new mixed finite element method based on the Crank–Nicolson scheme for the parabolic problems. Applied Mathematical Modelling, 2012, 36, 5068-5079.	2.2	21
174	Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem. Computers and Mathematics With Applications, 2012, 64, 2635-2646.	1.4	9
175	Two-level stabilized finite element method for Stokes eigenvalue problem. Applied Mathematics and Mechanics (English Edition), 2012, 33, 621-630.	1.9	14
176	A new defectâ€correction method for the stationary Navier–Stokes equations based on local Gauss integration. Mathematical Methods in the Applied Sciences, 2012, 35, 1033-1046.	1.2	7
177	P 1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations. Journal of Scientific Computing, 2012, 52, 519-545.	1.1	19
178	The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems. Applied Mathematical Modelling, 2012, 36, 561-572.	2.2	30
179	Two-level stabilized method based on three corrections for the stationary Navier–Stokes equations. Applied Numerical Mathematics, 2012, 62, 988-1001.	1.2	28
180	A stabilized implicit fractional-step method for the time-dependent Navier–Stokes equations using equal-order pairs. Journal of Mathematical Analysis and Applications, 2012, 392, 209-224.	0.5	14

#	Article	IF	CITATIONS
181	The local discontinuous Galerkin finite element method for Burger's equation. Mathematical and Computer Modelling, 2011, 54, 2943-2954.	2.0	45
182	Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence. Acta Mathematica Scientia, 2011, 31, 1959-1967.	0.5	28
183	Locally stabilized <pre>cmml:math xmins:mml= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</pre>	nl:m1a> <td>۱ml2nrow><!--</td--></td>	۱ml 2n row> </td
184	Computational and Applied Wathematics, 2007, 236, 2007,237 Modified homotopy perturbation method for solving the Stokes equations. Computers and Mathematics With Applications, 2011, 61, 2262-2266.	1.4	7
185	Convergence analysis of an implicit fractional-step method for the incompressible Navier–Stokes equations. Applied Mathematical Modelling, 2011, 35, 5856-5871.	2.2	13
186	On error estimates of the fully discrete penalty method for the viscoelastic flow problem. International Journal of Computer Mathematics, 2011, 88, 2199-2220.	1.0	13
187	New predictor–corrector methods of second-order for solving nonlinear equations. International Journal of Computer Mathematics, 2011, 88, 296-313.	1.0	5
188	Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem. Mathematical Problems in Engineering, 2011, 2011, 1-14.	0.6	7
189	On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization. Applied Mathematical Modelling, 2010, 34, 4089-4105.	2.2	16
190	New predictor-corrector methods for solving nonlinear equations. Journal of Applied Mathematics and Computing, 2010, 34, 299-315.	1.2	3
191	The convergence of a new parallel algorithm for the Navier–Stokes equations. Nonlinear Analysis: Real World Applications, 2009, 10, 23-41.	0.9	8
192	Application of modified homotopy perturbation method for solving the augmented systems. Journal of Computational and Applied Mathematics, 2009, 231, 288-301.	1.1	7
193	Estimation of parameters of the Makeham distribution using the least squares method. Mathematics and Computers in Simulation, 2008, 77, 34-44.	2.4	16
194	The numerical rank of a matrix and its applications. Applied Mathematics and Computation, 2008, 196, 416-421.	1.4	0
195	The semi-discrete streamline diffusion finite element method for time-dependented convection–diffusion problems. Applied Mathematics and Computation, 2008, 202, 771-779.	1.4	21
196	Finite volume method based on stabilized finite elements for the nonstationary Navier–Stokes problem. Numerical Methods for Partial Differential Equations, 2007, 23, 1167-1191.	2.0	14
197	The rank of a random matrix. Applied Mathematics and Computation, 2007, 185, 689-694.	1.4	56
198	High order iterative methods without derivatives for solving nonlinear equations. Applied Mathematics and Computation, 2007, 186, 1617-1623.	1.4	23

#	Article	IF	CITATIONS
199	An efficient algorithm for solving Troesch's problem. Applied Mathematics and Computation, 2007, 189, 500-507.	1.4	68
200	Parametric iterative methods of second-order for solving nonlinear equation. Applied Mathematics and Computation, 2006, 173, 1060-1067.	1.4	4
201	Numerical Simulation of the Convection–Diffusion PDEs on a Sphere with RBF-FD and RBF-QR Methods. International Journal of Computational Methods, 0, , 2150020.	0.8	Ο
202	Local tangential lifting virtual element method for the diffusion–reaction equation on the non-flat Voronoi discretized surface. Engineering With Computers, 0, , 1.	3.5	0