Liqin Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730639/publications.pdf

Version: 2024-02-01

236833 233338 4,325 45 25 45 h-index citations g-index papers 47 47 47 5942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Waterâ€Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angewandte Chemie - International Edition, 2009, 48, 5875-5879.	7.2	856
2	Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials, 2010, 31, 3287-3295.	5.7	522
3	Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials, 2010, 31, 7078-7085.	5.7	504
4	High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors. Analytical Chemistry, 2009, 81, 8687-8694.	3.2	387
5	Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nature Communications, 2012, 3, 1193.	5.8	229
6	Multimodal‣uminescence Core–Shell Nanocomposites for Targeted Imaging of Tumor Cells. Chemistry - A European Journal, 2009, 15, 3577-3584.	1.7	227
7	Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels. Chemistry of Materials, 2008, 20, 7003-7009.	3.2	196
8	Phosphorescence Imaging of Homocysteine and Cysteine in Living Cells Based on a Cationic Iridium(III) Complex. Inorganic Chemistry, 2010, 49, 6402-6408.	1.9	175
9	Sequential PDT and PTT Using Dualâ€Modal Singleâ€Walled Carbon Nanohorns Synergistically Promote Systemic Immune Responses against Tumor Metastasis and Relapse. Advanced Science, 2020, 7, 2001088.	5.6	119
10	A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging. Organic and Biomolecular Chemistry, 2009, 7, 2554.	1.5	96
11	A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg ²⁺ in natural water and living cells. Journal of Environmental Monitoring, 2009, 11, 330-335.	2.1	92
12	Metabolic Control by Heat Stress Determining Cell Fate to Ferroptosis for Effective Cancer Therapy. ACS Nano, 2021, 15, 7179-7194.	7.3	91
13	Tumor Chemo-Radiotherapy with Rod-Shaped and Spherical Gold Nano Probes: Shape and Active Targeting Both Matter. Theranostics, 2019, 9, 1893-1908.	4.6	66
14	Silica-coated superparamagnetic iron oxide nanoparticles targeting ofÂEPCs in ischemic brain injury. Biomaterials, 2013, 34, 4982-4992.	5.7	65
15	Efficient Method for Site-Specific ¹⁸ F-Labeling of Biomolecules Using the Rapid Condensation Reaction between 2-Cyanobenzothiazole and Cysteine. Bioconjugate Chemistry, 2012, 23, 1902-1908.	1.8	63
16	Redox-Triggered Self-Assembly of Gadolinium-Based MRI Probes for Sensing Reducing Environment. Bioconjugate Chemistry, 2014, 25, 1526-1536.	1.8	47
17	Long-Term-Stable Near-Infrared Polymer Dots with Ultrasmall Size and Narrow-Band Emission for Imaging Tumor Vasculature in Vivo. Bioconjugate Chemistry, 2015, 26, 817-821.	1.8	32
18	Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. Journal of Materials Chemistry B, 2016, 4, 202-206.	2.9	31

#	Article	IF	Citations
19	Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS Applied Materials & Interfaces, 2018, 10, 20884-20896.	4.0	31
20	A self-immobilizing near-infrared fluorogenic probe for sensitive imaging of extracellular enzyme activity <i>in vivo</i> . Chemical Science, 2020, 11, 5889-5894.	3.7	30
21	Fast and Accurate Imaging of Lymph Node Metastasis with Multifunctional Nearâ€Infrared Polymer Dots. Advanced Functional Materials, 2018, 28, 1707174.	7.8	29
22	A photostable fluorescent probe for targeted imaging of tumour cells possessing integrin $\hat{l}\pm\nu\hat{l}^23^{**}$. Molecular BioSystems, 2009, 5, 241.	2.9	28
23	Polymer nanoparticles with an embedded phosphorescent osmium(ii) complex for cell imaging. Journal of Materials Chemistry, 2011, 21, 5360.	6.7	26
24	Synthesis of ligand-functionalized water-soluble [18F]YF3 nanoparticles for PET imaging. Nanoscale, 2013, 5, 3253.	2.8	26
25	Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy. Acta Biomaterialia, 2022, 146, 450-464.	4.1	26
26	A Nano "Immuneâ€Guide―Recruiting Lymphocytes and Modulating the Ratio of Macrophages from Different Origins to Enhance Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2009116.	7.8	24
27	Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle) Tj ETQq1 🛚	1 0.78431 <i>4</i>	t 1 rgBT /Overlo
28	EDTA-Modified $17\hat{l}^2$ -Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis. Theranostics, 2020, 10, 3281-3292.	4.6	20
29	Folic Acid Functionalized PFBT Fluorescent Polymer Dots for Tumor Imaging. Chinese Journal of Chemistry, 2016, 34, 570-575.	2.6	18
30	Cytotoxicity, tumor targeting and PET imaging of sub-5 nm KGdF ₄ multifunctional rare earth nanoparticles. Nanoscale, 2015, 7, 13404-13409.	2.8	16
31	Facilely synthesized pH-responsive fluorescent polymer dots entrapping doped and coupled doxorubicin for nucleus-targeted chemotherapy. Journal of Materials Chemistry B, 2017, 5, 2921-2930.	2.9	16
32	Size-dependent optical properties of conjugated polymer nanoparticles. RSC Advances, 2017, 7, 55957-55965.	1.7	11
33	Delineation of retroperitoneal metastatic lymph nodes in ovarian cancer with near-infrared fluorescence imaging. Oncology Letters, 2017, 14, 2869-2877.	0.8	8
34	Dual-Performance Optimized Silks from Ultra-Low Dose Polymer Dots Feeding and Its Absorption, Distribution and Excretion in the Silkworms. Advanced Fiber Materials, 2022, 4, 845-858.	7.9	8
35	Self-cascade nanohybrids boost cell ferroptosis stress for tumor radiosensitization therapy. Applied Materials Today, 2022, 29, 101558.	2.3	7
36	High-Resolution Imaging of the Lymphatic Vascular System in Living Mice/Rats Using Dual-Modal Polymer Dots. ACS Applied Bio Materials, 2019, 2, 3877-3885.	2.3	6

#	Article	IF	Citations
37	Fluorescent Polymer Dots for Tracking SKOV3 Cells in Living Mice with Probe-Based Confocal Laser Endomicroscopy. Molecular Imaging and Biology, 2019, 21, 1026-1033.	1.3	6
38	The Effect of Polymer Dots During Mammalian Early Embryo Development and Their Biocompatibility on Maternal Health. Macromolecular Bioscience, 2020, 20, e2000128.	2.1	6
39	High resolution tracking of macrophage cells in deep organs and lymphatics using fluorescent polymer dots. RSC Advances, 2019, 9, 10966-10975.	1.7	5
40	Modified polymer dots for multi-scale multi-modal imaging of lymphatic system in tumor pre-metastasis. Applied Materials Today, 2020, 21, 100863.	2.3	5
41	NIR/photoacoustic imaging of multitype gallbladder cancer using carboxyl/amino functionalized polymer dots. Biomaterials Science, 2020, 8, 6657-6669.	2.6	4
42	Recent Advances on Near-Infrared-Emitting Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] Polymer Dots for in vivo Imaging. General Chemistry, 2016, 2, 99-106.	0.6	4
43	Near-Infrared Polymer Dots in the Portal-Hepatic Circulation Achieve Localization of Hepatic Carcinoma <i>In Vivo</i> . ACS Applied Bio Materials, 2020, 3, 6177-6186.	2.3	1
44	Imaging of fluorescent polymer dots in relation to channels and immune cells in the lymphatic system. Materials Today Bio, 2022, 15, 100317.	2.6	1
45	In Vivo Near-Infrared Fluorescence Imaging Based on Polymer Dots. , 2018, , 537-577.		0