Sheridan Woo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compost and microbial biostimulant applications improve plant growth and soil biological fertility of a grass-based phytostabilization system. Environmental Geochemistry and Health, 2023, 45, 787-807.	3.4	10
2	Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 2022, 11, 259.	3.5	35
3	Combined Biostimulant Applications of Trichoderma spp. with Fatty Acid Mixtures Improve Biocontrol Activity, Horticultural Crop Yield and Nutritional Quality. Agronomy, 2022, 12, 275.	3.0	7
4	Pea-Wheat Rotation Affects Soil Microbiota Diversity, Community Structure, and Soilborne Pathogens. Microorganisms, 2022, 10, 370.	3.6	16
5	Mineral Biofortification and Growth Stimulation of Lentil Plants Inoculated with Trichoderma Strains and Metabolites. Microorganisms, 2022, 10, 87.	3.6	15
6	Combination of the Systemin peptide with the beneficial fungus <i>Trichoderma afroharzianum</i> T22 improves plant defense responses against pests and diseases. Journal of Plant Interactions, 2022, 17, 569-579.	2.1	6
7	Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. Molecules, 2022, 27, 3959.	3.8	14
8	Antimicrobial activity of harzianic acid against <i>Staphylococcus pseudintermedius</i> . Natural Product Research, 2021, 35, 5440-5445.	1.8	13
9	<i>Trichoderma</i> spp. and a carob (<i>Ceratonia siliqua</i>) galactomannan to control the root-knot nematode <i>Meloidogyne incognita</i> on tomato plants. Canadian Journal of Plant Pathology, 2021, 43, 267-274.	1.4	7
10	Biostimulant Activity of Azotobacter chroococcum and Trichoderma harzianum in Durum Wheat under Water and Nitrogen Deficiency. Agronomy, 2021, 11, 380.	3.0	25
11	Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests. Frontiers in Plant Science, 2021, 12, 678830.	3.6	24
12	Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens, 2021, 10, 870.	2.8	22
13	Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 2021, 10, 1242.	2.8	28
14	The Union Is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm. Microorganisms, 2021, 9, 60.	3.6	11
15	Editorial: Designing Bio-Formulations Based on Organic Amendments, Beneficial Microbes and Their Metabolites. Frontiers in Microbiology, 2021, 12, 832149.	3.5	2
16	Effects of Lentil Genotype on the Colonization of Beneficial Trichoderma Species and Biocontrol of Aphanomyces Root Rot. Microorganisms, 2020, 8, 1290.	3.6	17
17	Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. Agronomy, 2020, 10, 1310.	3.0	7
18	Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement. Agriculture (Switzerland), 2020, 10, 587.	3.1	20

#	Article	IF	CITATIONS
19	A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes. Agriculture (Switzerland), 2020, 10, 643.	3.1	8
20	The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. Journal of Fungi (Basel, Switzerland), 2020, 6, 369.	3.5	15
21	Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection. Frontiers in Microbiology, 2020, 11, 732.	3.5	25
22	Heterologous Expression of PKPI and Pin1 Proteinase Inhibitors Enhances Plant Fitness and Broad-Spectrum Resistance to Biotic Threats. Frontiers in Plant Science, 2020, 11, 461.	3.6	7
23	Diplotaxis tenuifolia (L.) DC. Yield and Quality as Influenced by Cropping Season, Protein Hydrolysates, and Trichoderma Applications. Plants, 2020, 9, 697.	3.5	25
24	Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta). Marine Drugs, 2020, 18, 169.	4.6	18
25	Application of Trichoderma harzianum, 6-Pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. Plants, 2020, 9, 771.	3.5	46
26	Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Frontiers in Microbiology, 2020, 11, 1364.	3.5	49
27	Appraisal of Combined Applications of Trichoderma virens and a Biopolymer-Based Biostimulant on Lettuce Agronomical, Physiological, and Qualitative Properties under Variable N Regimes. Agronomy, 2020, 10, 196.	3.0	56
28	Can Trichoderma-Based Biostimulants Optimize N Use Efficiency and Stimulate Growth of Leafy Vegetables in Greenhouse Intensive Cropping Systems?. Agronomy, 2020, 10, 121.	3.0	28
29	Antibiofilm Activity of a Trichoderma Metabolite against Xanthomonas campestris pv. campestris, Alone and in Association with a Phage. Microorganisms, 2020, 8, 620.	3.6	10
30	Effect of <i>Trichoderma</i> Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits. Journal of Agricultural and Food Chemistry, 2020, 68, 7246-7258.	5.2	24
31	Inhibitory effect of trichodermanone C, a sorbicillinoid produced by <i>Trichoderma citrinoviride</i> associated to the green alga <i>Cladophora</i> sp., on nitrite production in LPS-stimulated macrophages. Natural Product Research, 2019, 33, 3389-3397.	1.8	24
32	Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Frontiers in Physiology, 2019, 10, 745.	2.8	116
33	Trichoderma atroviride P1 Colonization of Tomato Plants Enhances Both Direct and Indirect Defense Barriers Against Insects. Frontiers in Physiology, 2019, 10, 813.	2.8	51
34	Application of <i>Trichoderma</i> Strains and Metabolites Enhances Soybean Productivity and Nutrient Content. Journal of Agricultural and Food Chemistry, 2019, 67, 1814-1822.	5.2	67
35	Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two synthetic nematicides in two consecutive crop cycles in greenhouse. Crop Protection, 2019, 122, 159-164.	2.1	30
36	Chlamyphilone, a Novel Pochonia chlamydosporia Metabolite with Insecticidal Activity. Molecules, 2019, 24, 750.	3.8	12

#	Article	lF	CITATIONS
37	Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 2019, 20, 549.	4.1	36
38	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	2.6	147
39	Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Applied Soil Ecology, 2018, 124, 351-361.	4.3	22
40	Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiology, 2018, 18, 208.	3.3	8
41	Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1801.	3.6	204
42	Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology, 2018, 9, 1966.	3.5	126
43	Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression. Annual Review of Phytopathology, 2018, 56, 1-20.	7.8	215
44	Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. Frontiers in Plant Science, 2018, 9, 743.	3.6	224
45	Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE, 2018, 13, e0198728.	2.5	40
46	Secondary metabolites from the endophytic fungus <i>Talaromyces pinophilus</i> . Natural Product Research, 2017, 31, 1778-1785.	1.8	85
47	<i>Trichoderma harzianum</i> enhances tomato indirect defense against aphids. Insect Science, 2017, 24, 1025-1033.	3.0	69
48	Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. Scientific Reports, 2017, 7, 14330.	3.3	55
49	Mode of action and efficacy of iprodione against the root-knot nematode Meloidogyne incognita. Annals of Applied Biology, 2017, 171, 506-510.	2.5	10
50	Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 2017, 92, 176-181.	2.1	135
51	Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from <i>Trichoderma</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3538-3545.	5.2	56
52	Cremenolide, a new antifungal, 10-member lactone from <i>Trichoderma cremeum</i> with plant growth promotion activity. Natural Product Research, 2016, 30, 2575-2581.	1.8	51
53	Multiple Roles and Effects of a Novel <i>Trichoderma</i> Hydrophobin. Molecular Plant-Microbe Interactions, 2015, 28, 167-179.	2.6	100
54	Gate crashing arbuscular mycorrhizas: <i>in vivo</i> imaging shows the extensive colonization of both symbionts by <scp><i>T</i></scp> <i>richoderma atroviride</i> . Environmental Microbiology Reports, 2015, 7, 64-77.	2.4	41

#	Article	IF	CITATIONS
55	Trichoderma: A Multi-Purpose Tool for Integrated Pest Management. , 2015, , 345-353.		65
56	Metabolites produced by Gnomoniopsis castanea associated with necrosis of chestnut galls. Chemical and Biological Technologies in Agriculture, 2014, 1, .	4.6	7
57	A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications. Molecules, 2014, 19, 9760-9772.	3.8	89
58	Trichoderma-based Products and their Widespread Use in Agriculture. The Open Mycology Journal, 2014, 8, 71-126.	0.8	451
59	Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal, 2014, 8, 127-139.	0.8	188
60	Harzianic acid: a novel siderophore from <i>Trichoderma harzianum</i> . FEMS Microbiology Letters, 2013, 347, n/a-n/a.	1.8	139
61	Cerinolactone, a Hydroxy-Lactone Derivative from <i>Trichoderma cerinum</i> . Journal of Natural Products, 2012, 75, 103-106.	3.0	49
62	<i>Trichoderma</i> Secondary Metabolites that Affect Plant Metabolism. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	67
63	Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection. Journal of Plant Physiology, 2011, 168, 2225-2233.	3.5	28
64	Proteomic Approaches to Understand Trichoderma Biocontrol Mechanisms and Plant Interactions. Current Proteomics, 2010, 7, 298-305.	0.3	16
65	Translational Research on <i>Trichoderma</i> : From 'Omics to the Field. Annual Review of Phytopathology, 2010, 48, 395-417.	7.8	545
66	Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biology and Biochemistry, 2009, 41, 2406-2413.	8.8	95
67	Factors affecting the production of <i>Trichoderma harzianum</i> secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology, 2009, 48, 705-11.	2.2	114
68	Identification of a New Biocontrol Gene in <i>Trichoderma atroviride</i> : The Role of an ABC Transporter Membrane Pump in the Interaction with Different Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2009, 22, 291-301.	2.6	139
69	Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 2008, 40, 1-10.	8.8	932
70	A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 2008, 72, 80-86.	2.5	441
71	Genetically Closely Related but Phenotypically Divergent <i>Trichoderma</i> Species Cause Green Mold Disease in Oyster Mushroom Farms Worldwide. Applied and Environmental Microbiology, 2007, 73, 7415-7426.	3.1	111
72	EXPLOITING THE INTERACTIONS BETWEEN FUNGAL ANTAGONISTS, PATHOGENS AND THE PLANT FOR BIOCONTROL. , 2007, , 107-130.		41

#	Article	IF	CITATIONS
73	Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 2007, 7, 41.	3.6	68
74	The Molecular Biology of the Interactions Between Trichoderma spp., Phytopathogenic Fungi, and Plants. Phytopathology, 2006, 96, 181-185.	2.2	301
75	Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 2006, 50, 307-321.	1.7	247
76	Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance. Applied and Environmental Microbiology, 2005, 71, 3959-3965.	3.1	148
77	In Vivo Study of Trichoderma -Pathogen-Plant Interactions, Using Constitutive and Inducible Green Fluorescent Protein Reporter Systems. Applied and Environmental Microbiology, 2004, 70, 3073-3081.	3.1	157
78	Mode of action and antifungal properties of two cold-adapted chitinases. Extremophiles, 2003, 7, 385-390.	2.3	13
79	Pseudomonas Lipodepsipeptides and Fungal Cell Wall-Degrading Enzymes Act Synergistically in Biological Control. Molecular Plant-Microbe Interactions, 2002, 15, 323-333.	2.6	70
80	Confusion Abounds Over Identities of Trichoderma Biocontrol Isolates. Mycological Research, 2001, 105, 770-772.	2.5	67
81	Ultrastructural features of spermatocytes and spermatozoids in the fern Phyllitis scolopendrium (L.) Newm. subsp. scolopendrium. Sexual Plant Reproduction, 2000, 12, 323-331.	2.2	6
82	Disruption of the ech42 (Endochitinase-Encoding) Gene Affects Biocontrol Activity in Trichoderma harzianum P1. Molecular Plant-Microbe Interactions, 1999, 12, 419-429.	2.6	126
83	Chitinase Gene Expression during Mycoparasitic Interaction ofTrichoderma harzianumwith Its Host. Fungal Genetics and Biology, 1999, 26, 131-140.	2.1	231
84	Expression of Two Major Chitinase Genes of Trichoderma atroviride (T. harzianum P1) Is Triggered by Different Regulatory Signals. Applied and Environmental Microbiology, 1999, 65, 1858-1863.	3.1	142
85	Systematic Numbering of Vegetative Compatibility Groups in the Plant Pathogenic Fungus Fusarium oxysporum. Phytopathology, 1998, 88, 30-32.	2.2	76
86	Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7860-7865.	7.1	403
87	An ultrastructural study of the mature spermatozoid of the fern Asplenium trichomanes L. subsp. trichomanes. Sexual Plant Reproduction, 1997, 10, 142-148.	2.2	9
88	Synergistic Interaction Between Cell Wall Degrading Enzymes and Membrane Affecting Compounds. Molecular Plant-Microbe Interactions, 1996, 9, 206.	2.6	135
89	Potential of genes and gene products fromTrichoderma sp. andGliocladium sp. for the development of biological pesticides. Molecular Biotechnology, 1994, 2, 209-217.	2.4	24
90	Proteinase Inhibitors from Plants As a Novel Class of Fungicides. Molecular Plant-Microbe Interactions, 1994, 7, 525.	2.6	87

#	Article	IF	CITATIONS
91	Methods for Electrophoretic Karyotyping of Filamentous Fungi in the Genus Trichoderma. Analytical Biochemistry, 1993, 209, 176-182.	2.4	10
92	Chitinolytic Enzymes Produced byTrichoderma harzianum: Antifungal Activity of Purified Endochitinase and Chitobiosidase. Phytopathology, 1993, 83, 302.	2.2	308
93	ROOT KNOT DISEASE CAUSED BY MELOIDOGYNE INCOGNITA (KOFOID &WHITE, 1919) CHITWOOD, 1949 (NEMATODA, MELOIDOGYNIDAE) ON TOMATO GROWN IN SOIL-LESS CROPS IN ITALY. Redia, 0, , 25-28.	0.4	1
94	NEMATICIDAL EFFICACY OF NEW ABAMECTIN-BASED PRODUCTS USED ALONE AND IN COMBINATION WITH INDOLEBUTYRIC ACID AGAINST THE ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA. Redia, 0, , 95-101.	0.4	5
95	ACTIVITY OF CHESTNUT TANNINS AGAINST THE SOUTHERN ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA. Redia, 0, , 53-59.	0.4	3