
Philip Hinchliffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730408/publications.pdf Version: 2024-02-01

PHILIP HINCHLIFFF

#	Article	IF	CITATIONS
1	A multiscale approach to predict the binding mode of metallo betaâ€lactamase inhibitors. Proteins: Structure, Function and Bioinformatics, 2022, 90, 372-384.	2.6	8
2	lmitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nature Chemistry, 2022, 14, 15-24.	13.6	39
3	Catalytic mechanism of the colistin resistance protein MCR-1. Organic and Biomolecular Chemistry, 2021, 19, 3813-3819.	2.8	11
4	Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl–enzyme conformational dynamics to extend antibiotic resistance. Journal of Biological Chemistry, 2021, 296, 100126.	3.4	27
5	Faropenem reacts with serine and metallo-β-lactamases to give multiple products. European Journal of Medicinal Chemistry, 2021, 215, 113257.	5.5	14
6	An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography. Nature Communications, 2021, 12, 4461.	12.8	34
7	2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-β-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infectious Diseases, 2021, 7, 2697-2706.	3.8	16
8	2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chemical Science, 2021, 12, 2898-2908.	7.4	24
9	Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form. Journal of Chemical Information and Modeling, 2021, , .	5.4	5
10	Discovery of New and Potent InhA Inhibitors as Antituberculosis Agents: Structure-Based Virtual Screening Validated by Biological Assays and X-ray Crystallography. Journal of Chemical Information and Modeling, 2020, 60, 226-234.	5.4	34
11	Resistance to the "last resort―antibiotic colistin: a single-zinc mechanism for phosphointermediate formation in MCR enzymes. Chemical Communications, 2020, 56, 6874-6877.	4.1	10
12	Cyclic boronates as versatile scaffolds for KPC-2 β-lactamase inhibition. RSC Medicinal Chemistry, 2020, 11, 491-496.	3.9	20
13	Molecular Basis of Class A \hat{l}^2 -Lactamase Inhibition by Relebactam. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	45
14	Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. Journal of Medicinal Chemistry, 2019, 62, 8544-8556.	6.4	139
15	Mechanistic Insights into \hat{l}^2 -Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation. Scientific Reports, 2019, 9, 13608.	3.3	27
16	Profiling interactions of vaborbactam with metallo-Î ² -lactamases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1981-1984.	2.2	34
17	β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, 2019, 431, 3472-3500.	4.2	517
18	Crystal structures of VIMâ€1 complexes explain active site heterogeneity in VIMâ€class metalloâ€Î²â€lactamases. FEBS Journal, 2019, 286, 169-183.	4.7	30

PHILIP HINCHLIFFE

#	Article	IF	CITATIONS
19	Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry, 2018, 57, 1880-1892.	2.5	49
20	Cyclobutanone Mimics of Intermediates in Metalloâ€Î²â€Lactamase Catalysis. Chemistry - A European Journal, 2018, 24, 5734-5737.	3.3	25
21	Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Scientific Reports, 2017, 7, 39392.	3.3	107
22	¹⁹ Fâ€NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metalloâ€Î²â€Łactamase. Angewandte Chemie - International Edition, 2017, 56, 3862-3866.	13.8	20
23	¹⁹ Fâ€NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metalloâ€Î²â€Łactamase. Angewandte Chemie, 2017, 129, 3920-3924.	2.0	3
24	Structural/mechanistic insights into the efficacy of nonclassical Î²â€łactamase inhibitors against extensively drug resistant <i>Stenotrophomonas maltophilia</i> clinical isolates. Molecular Microbiology, 2017, 106, 492-504.	2.5	39
25	Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nature Communications, 2017, 8, 2054.	12.8	157
26	1.12â€Ã resolution crystal structure of the catalytic domain of the plasmid-mediated colistin resistance determinant MCR-2. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 443-449.	0.8	22
27	Sideromimic Modification of Lactivicin Dramatically Increases Potency against Extensively Drug-Resistant Stenotrophomonas maltophilia Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2016, 60, 4170-4175.	3.2	16
28	Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study. Antimicrobial Agents and Chemotherapy, 2016, 60, 5828-5840.	3.2	22
29	Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3745-54.	7.1	122
30	Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infectious Diseases, 2015, 1, 544-554.	3.8	100
31	Penicillanic Acid Sulfones Inactivate the Extended-Spectrum \hat{l}^2 -Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of \hat{l}^2 -Lactamase Inhibition. MBio, 0, , .	4.1	2