Zheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1730159/publications.pdf Version: 2024-02-01

ZHENC YANC

#	Article	lF	CITATIONS
1	Modeling the propagation of mobile malware on complex networks. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 249-264.	3.3	63
2	The Death and Rebirth of Privacy-Preserving WiFi Fingerprint Localization with Paillier Encryption. , 2018, , .		36
3	Faster Authenticated Key Agreement With Perfect Forward Secrecy for Industrial Internet-of-Things. IEEE Transactions on Industrial Informatics, 2020, 16, 6584-6596.	11.3	35
4	PILOT: Practical Privacy-Preserving Indoor Localization Using OuTsourcing. , 2019, , .		27
5	A Novel Authenticated Key Agreement Protocol With Dynamic Credential for WSNs. ACM Transactions on Sensor Networks, 2019, 15, 1-27.	3.6	19
6	On the security of a provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. International Journal of Distributed Sensor Networks, 2018, 14, 155014771875631.	2.2	17
7	Building Low-Interactivity Multifactor Authenticated Key Exchange for Industrial Internet of Things. IEEE Internet of Things Journal, 2021, 8, 844-859.	8.7	16
8	Network Emulation as a Service (NEaaS): Towards a Cloud-Based Network Emulation Platform. Mobile Networks and Applications, 2021, 26, 766-780.	3.3	15
9	Efficient eCK-Secure Authenticated Key Exchange Protocols in the Standard Model. Lecture Notes in Computer Science, 2013, , 185-193.	1.3	15
10	Stability of switched neural networks with time-varying delays. Neural Computing and Applications, 2018, 30, 2229-2244.	5.6	14
11	On security analysis of an after-the-fact leakage resilient key exchange protocol. Information Processing Letters, 2016, 116, 33-40.	0.6	10
12	LiS: Lightweight Signature Schemes for Continuous Message Authentication in Cyber-Physical Systems. , 2020, , .		10
13	Faster Privacy-Preserving Location Proximity Schemes. Lecture Notes in Computer Science, 2018, , 3-22.	1.3	9
14	New Modular Compilers for Authenticated Key Exchange. Lecture Notes in Computer Science, 2014, , 1-18.	1.3	6
15	On constructing practical multiâ€recipient keyâ€encapsulation with short ciphertext and public key. Security and Communication Networks, 2015, 8, 4191-4202.	1.5	5
16	Stability of Variable-Time Switched Systems. Arabian Journal for Science and Engineering, 2017, 42, 2971-2980.	3.0	5
17	New constructions for (multiparty) one-round key exchange with strong security. Science China Information Sciences, 2018, 61, 1.	4.3	5
18	Strongly Secure One-Round Group Authenticated Key Exchange in the Standard Model. Lecture Notes in Computer Science, 2013, , 122-138.	1.3	5

ZHENG YANG

#	Article	IF	CITATIONS
19	Proof of aliveness. , 2019, , .		5
20	Modelling Simultaneous Mutual Authentication for Authenticated Key Exchange. Lecture Notes in Computer Science, 2014, , 46-62.	1.3	5
21	Two-Message Key Exchange with Strong Security from Ideal Lattices. Lecture Notes in Computer Science, 2018, , 98-115.	1.3	4
22	Faster privacyâ€preserving location proximity schemes for circles and polygons. IET Information Security, 2020, 14, 254-265.	1.7	4
23	Towards modelling perfect forward secrecy in twoâ€message authenticated key exchange under ephemeralâ€key revelation. Security and Communication Networks, 2015, 8, 3356-3371.	1.5	3
24	Stabilization of switched neural networks with timeâ€varying delay via bumpless transfer control. Asian Journal of Control, 2020, 22, 1008-1020.	3.0	3
25	Modeling Privacy in WiFi Fingerprinting Indoor Localization. Lecture Notes in Computer Science, 2018, , 329-346.	1.3	3
26	Authenticated key exchange with synchronized state. Security and Communication Networks, 2014, 7, 2373-2388.	1.5	2
27	A practical strongly secure oneâ€round authenticated key exchange protocol without random oracles. Security and Communication Networks, 2015, 8, 1118-1131.	1.5	2
28	Simpler Generic Constructions for Strongly Secure One-round Key Exchange from Weaker Assumptions. Computer Journal, 0, , .	2.4	2
29	On the Reachability of Discrete-Time Switched Linear Systems. Journal of Dynamical and Control Systems, 2017, 23, 815-823.	0.8	2
30	SignORKE: improving pairingâ€based oneâ€round key exchange without random oracles. IET Information Security, 2017, 11, 243-249.	1.7	2
31	New stability results of generalized impulsive functional differential equations. Science China Information Sciences, 2022, 65, 1.	4.3	2
32	Opportunities and Challenges in Securing Critical Infrastructures Through Cryptography. IEEE Security and Privacy, 2021, 19, 57-65.	1.2	2
33	Enabling isolation and recovery in PLC redundancy framework of metro train systems. International Journal of Information Security, 2021, 20, 783-795.	3.4	2
34	Group Time-based One-time Passwords and its Application to Efficient Privacy-Preserving Proof of Location. , 2021, , .		2
35	A new strong security model for stateful authenticated group key exchange. International Journal of Information Security, 2018, 17, 423-440.	3.4	1
36	On Security Analysis of Generic Dynamic Authenticated Group Key Exchange. Lecture Notes in Computer Science, 2018, , 121-137.	1.3	1

ZHENG YANG

#	Article	IF	CITATIONS
37	LARP: A Lightweight Auto-Refreshing Pseudonym Protocol for V2X. , 2022, , .		1
38	A new efficient signcryption scheme in the standard model. Security and Communication Networks, 2015, 8, 778-789.	1.5	0
39	An efficient strongly secure authenticated key exchange protocol without random oracles. Security and Communication Networks, 2015, 8, 1461-1473.	1.5	0
40	Cryptanalysis of a generic oneâ€round key exchange protocol with strong security. IET Information Security, 2018, 12, 71-78.	1.7	0
41	Transparent Electricity Pricing with Privacy. Lecture Notes in Computer Science, 2021, , 439-460.	1.3	0