Maziar Ashuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1729755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design of titanium oxide-coated dual Core–Shell sulfur nanocomposite cathode for highly stable lithium–sulfur batteries. Journal of Physics and Chemistry of Solids, 2021, 149, 109791.	1.9	16
2	Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method. ACS Applied Energy Materials, 2021, 4, 4744-4757.	2.5	13
3	Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity. Nano Materials Science, 2020, 2, 297-308.	3.9	15
4	Improving cycle stability of Si anode through partially carbonized polydopamine coating. Journal of Electroanalytical Chemistry, 2020, 876, 114738.	1.9	18
5	Synthesis of a Very High Specific Surface Area Active Carbon and Its Electrical Double-Layer Capacitor Properties in Organic Electrolytes. ChemEngineering, 2020, 4, 43.	1.0	33
6	MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries. ChemEngineering, 2020, 4, 42.	1.0	7
7	A new graphitic carbon nitride-coated dual Core–Shell sulfur cathode for highly stable lithium–sulfur cells. Materials Chemistry and Physics, 2020, 246, 122842.	2.0	14
8	H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes. Electrochimica Acta, 2019, 301, 8-22.	2.6	50
9	Long-Term Cycle Behavior of Nano-LiCoO ₂ and Its Postmortem Analysis. Journal of Physical Chemistry C, 2019, 123, 3299-3308.	1.5	8
10	MnO ₂ -Coated Sulfur-Filled Hollow Carbon Nanosphere-Based Cathode Materials for Enhancing Electrochemical Performance of Li-S Cells. Journal of the Electrochemical Society, 2019, 166, A1355-A1362.	1.3	18
11	Tunable LiAlO ₂ /Al ₂ O ₃ Coating through a Wet-Chemical Method To Improve Cycle Stability of Nano-LiCoO ₂ . ACS Applied Energy Materials, 2019, 2, 3098-3113.	2.5	25
12	Enhancement in Electrochemical Performance of Lithiumâ€Sulfur Cells through Sulfur Encapsulation in Hollow Carbon Nanospheres Coated with Ultraâ€Thin Aluminum Fluoride Layer. ChemistrySelect, 2019, 4, 12622-12629.	0.7	9
13	Li ₃ BN ₂ as a Transition Metal Free, High Capacity Cathode for Liâ€ion Batteries. ChemElectroChem, 2019, 6, 320-325.	1.7	9
14	Coating - A potent method to enhance electrochemical performance of Li(NixMnyCoz)O2 cathodes for Li-ion batteries. Advanced Materials Letters, 2019, 10, 369-380.	0.3	14
15	A Simple Surface Modification Technique to Improve the Electrochemical Properties of NMC Family Cathode Materials. ECS Meeting Abstracts, 2019, , .	0.0	0
16	On the synthesis of lithium boron nitride (Li3BN2). Ceramics International, 2018, 44, 7734-7740.	2.3	6
17	Facile, Green, Low-Cost Fabrication of Silicon/Carbon Nanocomposites for Lithium-Ion Battery Anode Applications. ECS Meeting Abstracts, 2018, , .	0.0	0
18	Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles. Journal of Sol-Gel Science and Technology, 2017, 82, 201-213.	1.1	23

Maziar Ashuri

#	Article	IF	CITATIONS
19	Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids. Electrochimica Acta, 2017, 258, 274-283.	2.6	33
20	Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study. Electrochimica Acta, 2016, 215, 126-141.	2.6	62
21	Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016, 8, 74-103.	2.8	559
22	Synthesis and Electrochemical Performance of Carbon Coated Prelithiated Silicon Nanoparticles As the Anode for Lithium-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
23	Selectively-Etched Silicon/Graphite Nanocomposites As Anode Materials for Li-Ion Batteries: Towards the Reduced-Cost Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
24	Surface Modification of Castor Oilâ€Based Polyurethane by Polyacrylic Acid Graft using a Two‣tep Plasma Treatment for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	0.8	13
25	Li ₂ S encapsulated by nitrogen-doped carbon for lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 18026-18032.	5.2	90
26	Wet-Chemical Synthesis and Electrochemical Properties of Ce-Doped FeVO4 for Use as New Anode Material in Li-ion Batteries. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 1226-1232.	1.9	20
27	Advanced Gel Polymer Electrolyte for Lithium-Ion Polymer Batteries. , 2013, , .		8
28	Production of globular microstructure of A356 aluminium alloy by cooling channel and strain induced melt activation processes: morphological and hardness studies. International Journal of Cast Metals Research, 2013, 26, 100-104.	0.5	16
29	Chitosan/heparin surface modified polyacrylic acid grafted polyurethane film by two step plasma treatment. Surface Engineering, 2012, 28, 710-714.	1.1	32
30	Development of a composite based on hydroxyapatite and magnesium and zincâ€containing sol–gel-derived bioactive glass for bone substitute applications. Materials Science and Engineering C, 2012, 32, 2330-2339.	3.8	74
31	Micro-Emulsion Synthesis, Surface Modification, and Photophysical Properties of \${m Zn}_{1-x}~{m Mn}_{m x} {m S}\$ Nanocrystals for Biomolecular Recognition. IEEE Transactions on Nanobioscience, 2012, 11, 317-323.	2.2	21
32	Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method. Materials & Design, 2011, 32, 4417-4423.	5.1	98
33	Ion Release Behavior and Apatite-Forming Ability of Sol-Gel Derived 70S30C Bioactive Glass with Magnesium/Zinc Substitution. Key Engineering Materials, 0, 493-494, 55-60.	0.4	9
34	Controlled Synthesis, Characterization and Magnetic Properties of Magnetite (Fe ₃ O ₄) Nanoparticles without Surfactant under N ₂ Gas at Room Temperature. Key Engineering Materials, 0, 493-494, 746-751.	0.4	4