Zhengyi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1729442/publications.pdf

Version: 2024-02-01

471509 580821 25 778 17 25 citations h-index g-index papers 25 25 25 721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome, 2022, 10, 56.	11.1	54
2	A putative PKA phosphorylation site S227 in MoSom1 is essential for infectionâ€related morphogenesis and pathogenicity in Magnaporthe oryzae. Cellular Microbiology, 2021, 23, e13370.	2.1	2
3	Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 155-171.	1.7	22
4	The putative deubiquitinating enzyme MoUbp4 is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 561-576.	1.7	13
5	The sorting nexin FgAtg20 is involved in the Cvt pathway, nonâ€selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cellular Microbiology, 2020, 22, e13208.	2.1	11
6	The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Current Genetics, 2019, 65, 981-994.	1.7	9
7	Cytological studies on the infection of rice root by <i>Ustilaginoidea virens</i> . Microscopy Research and Technique, 2018, 81, 389-396.	2.2	22
8	Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. BMC Plant Biology, 2018, 18, 232.	3.6	27
9	Overexpression of PvGF14c from Phyllostachys violascens Delays Flowering Time in Transgenic Arabidopsis. Frontiers in Plant Science, 2018, 9, 105.	3.6	10
10	The cyclin dependent kinase subunit Cks1 is required for infectionâ€essociated development of the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 3959-3981.	3.8	13
11	Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7, 11062.	3.3	69
12	Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus. Genes, 2017, 8, 241.	2.4	36
13	<i>ZNF1</i> Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus <i>Magnaporthe oryzae</i> Molecular Plant-Microbe Interactions, 2016, 29, 22-35.	2.6	38
14	Identification and characterization of the peroxin 1 gene MoPEX1 required for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Scientific Reports, 2016, 6, 36292.	3.3	22
15	The putative $G\hat{I}^3$ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Current Genetics, 2015, 61, 641-651.	1.7	20
16	FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genetics and Biology, 2015, 83, 92-102.	2.1	4
17	Characterisation of Four LIM Protein-Encoding Genes Involved in Infection-Related Development and Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e88246.	2.5	20
18	Threonine deaminase Mollv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2014, 73, 53-60.	2.1	27

ZHENGYI WANG

#	Article	IF	CITATION
19	Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum. Fungal Biology, 2013, 117, 13-21.	2.5	26
20	The MET13 Methylenetetrahydrofolate Reductase Gene Is Essential for Infection-Related Morphogenesis in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2013, 8, e76914.	2.5	43
21	Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002385.	4.7	68
22	Eight RGS and RGS-like Proteins Orchestrate Growth, Differentiation, and Pathogenicity of Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002450.	4.7	131
23	A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum. PLoS ONE, 2011, 6, e25311.	2.5	42
24	Characterization of <i>MoLDB1</i> Required for Vegetative Growth, Infection-Related Morphogenesis, and Pathogenicity in the Rice Blast Fungus <i>Magnaporthe oryzae</i> Interactions, 2010, 23, 1260-1274.	2.6	35
25	A Gγ subunit promoter T-DNA insertion mutant—A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity. Science Bulletin, 2006, 51, 2214-2218.	1.7	14