Zhengyi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1729442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eight RGS and RGS-like Proteins Orchestrate Growth, Differentiation, and Pathogenicity of Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002450.	4.7	131
2	Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7, 11062.	3.3	69
3	Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002385.	4.7	68
4	The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome, 2022, 10, 56.	11.1	54
5	The MET13 Methylenetetrahydrofolate Reductase Gene Is Essential for Infection-Related Morphogenesis in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2013, 8, e76914.	2.5	43
6	A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum. PLoS ONE, 2011, 6, e25311.	2.5	42
7	<i>ZNF1</i> Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2016, 29, 22-35.	2.6	38
8	Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus. Genes, 2017, 8, 241.	2.4	36
9	Characterization of <i>MoLDB1</i> Required for Vegetative Growth, Infection-Related Morphogenesis, and Pathogenicity in the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1260-1274.	2.6	35
10	Threonine deaminase Mollv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2014, 73, 53-60.	2.1	27
11	Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. BMC Plant Biology, 2018, 18, 232.	3.6	27
12	Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum. Fungal Biology, 2013, 117, 13-21.	2.5	26
13	Identification and characterization of the peroxin 1 gene MoPEX1 required for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Scientific Reports, 2016, 6, 36292.	3.3	22
14	Cytological studies on the infection of rice root by <i>Ustilaginoidea virens</i> . Microscopy Research and Technique, 2018, 81, 389-396.	2.2	22
15	Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 155-171.	1.7	22
16	Characterisation of Four LIM Protein-Encoding Genes Involved in Infection-Related Development and Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e88246.	2.5	20
17	The putative GÎ ³ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Current Genetics, 2015, 61, 641-651.	1.7	20
18	A Gγ subunit promoter T-DNA insertion mutant—A1-412 of Magnaporthe grisea is defective in appressorium formation, penetration and pathogenicity. Science Bulletin, 2006, 51, 2214-2218.	1.7	14

Zhengyi Wang

#	Article	IF	CITATIONS
19	The cyclin dependent kinase subunit Cks1 is required for infectionâ€associated development of the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 3959-3981.	3.8	13
20	The putative deubiquitinating enzyme MoUbp4 is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 561-576.	1.7	13
21	The sorting nexin FgAtg20 is involved in the Cvt pathway, nonâ€selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cellular Microbiology, 2020, 22, e13208.	2.1	11
22	Overexpression of PvGF14c from Phyllostachys violascens Delays Flowering Time in Transgenic Arabidopsis. Frontiers in Plant Science, 2018, 9, 105.	3.6	10
23	The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Current Genetics, 2019, 65, 981-994.	1.7	9
24	FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genetics and Biology, 2015, 83, 92-102.	2.1	4
25	A putative PKA phosphorylation site S227 in MoSom1 is essential for infectionâ€related morphogenesis and pathogenicity in Magnaporthe oryzae. Cellular Microbiology, 2021, 23, e13370.	2.1	2