Pierre-Yves py Tessier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the substrate temperature during gold-copper alloys thin film deposition by magnetron co-sputtering on the dealloying process. Surface and Coatings Technology, 2020, 383, 125220.	4.8	10
2	The wrinkling concept applied to plasmaâ€deposited polymerâ€like thin films: A promising method for the fabrication of flexible electrodes. Plasma Processes and Polymers, 2020, 17, 2000119.	3.0	9
3	Lamellar nanoporous gold thin films with tunable porosity for ultrasensitive SERS detection in liquid and gas phase. Nanoscale, 2020, 12, 12602-12612.	5.6	14
4	Co-sputtering of gold and copper onto liquids: a route towards the production of porous gold nanoparticles. Nanotechnology, 2020, 31, 455303.	2.6	11
5	Study of the Coarsening of Nanoporous Gold Nanowires by In Situ Scanning Transmission Electron Microscopy During Annealing. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900376.	2.4	6
6	Patterning of silver on the micro- and nano-scale by local oxidation using air plasma. Nano Structures Nano Objects, 2019, 19, 100320.	3.5	4
7	Vapor dealloying of ultra-thin films: a promising concept for the fabrication of highly flexible transparent conductive metal nanomesh electrodes. Npj Flexible Electronics, 2019, 3, .	10.7	16
8	Polarization-dependent ultrafast plasmon relaxation dynamics in nanoporous gold thin films and nanowires. Journal Physics D: Applied Physics, 2019, 52, 225103.	2.8	5
9	(Invited) Dual-Gate TFT for Chemical Detection. ECS Transactions, 2018, 86, 169-176.	0.5	1
10	(Invited) Plasma Synthesis of Conductive Carbon Based Nanomaterials. ECS Transactions, 2017, 77, 37-39.	0.5	0
11	Tailoring the chemistry and the nano-architecture of organic thin films using cold plasma processes. Plasma Processes and Polymers, 2017, 14, 1700042.	3.0	6
12	Kirkendall Effect vs Corrosion of Silver Nanocrystals by Atomic Oxygen: From Solid Metal Silver to Nanoporous Silver Oxide. Journal of Physical Chemistry C, 2017, 121, 19497-19504.	3.1	22
13	Effect of temperature on the synthesis of nanoporous carbon from copper/carbon thin films to nanoporous carbon for sensing applications. Thin Solid Films, 2017, 630, 59-65.	1.8	3
14	Electrical behavior of nickel/carbon nanocomposite thin films. Carbon, 2017, 111, 878-886.	10.3	4
15	Growth control of carbon nanotubes using nanocomposite nickel/carbon thin films. Thin Solid Films, 2017, 630, 38-47.	1.8	3
16	Dual Gate Microsensors and Nanomaterials for Chemical Detection. Proceedings (mdpi), 2017, 1, 478.	0.2	0
17	Large-Scale Fabrication of Porous Gold Nanowires via Laser Interference Lithography and Dealloying of Gold–Silver Nano-Alloys. Micromachines, 2017, 8, 168.	2.9	18
18	Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores. Beilstein Journal of Nanotechnology, 2016, 7, 1361-1367.	2.8	7

#	Article	IF	CITATIONS
19	Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions. Small, 2016, 12, 2885-2892.	10.0	12
20	Impact of the morphology and composition on the dealloying process of coâ€sputtered silver–aluminum alloy thin films. Physica Status Solidi (B): Basic Research, 2016, 253, 2167-2174.	1.5	11
21	Galvanic Replacement Reaction: A Route to Highly Ordered Bimetallic Nanotubes. Journal of Physical Chemistry C, 2016, 120, 17652-17659.	3.1	52
22	Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning. ACS Applied Materials & Interfaces, 2016, 8, 6611-6620.	8.0	49
23	Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma. Nanoscale, 2016, 8, 141-148.	5.6	34
24	Unusual Dealloying Effect in Gold/Copper Alloy Thin Films: The Role of Defects and Column Boundaries in the Formation of Nanoporous Gold. ACS Applied Materials & Interfaces, 2015, 7, 2310-2321.	8.0	70
25	Plasma functionalization and etching for enhancing metal adhesion onto polymeric substrates. RSC Advances, 2015, 5, 62348-62357.	3.6	26
26	The Kirkendall Effect in Binary Alloys: Trapping Gold in Copper Oxide Nanoshells. Chemistry of Materials, 2015, 27, 6374-6384.	6.7	21
27	Sponge-like carbon thin films: The dealloying concept applied to copper/carbon nanocomposite. Carbon, 2015, 83, 250-261.	10.3	12
28	Electron Beam Nanosculpting of Kirkendall Oxide Nanochannels. ACS Nano, 2014, 8, 1854-1861.	14.6	34
29	Titanium carbide/carbon nanocomposite hard coatings: A comparative study between various chemical analysis tools. Surface and Coatings Technology, 2014, 256, 41-46.	4.8	12
30	Hollow Nanostructures: Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale (Small 17/2013). Small, 2013, 9, 2837-2837.	10.0	1
31	Growth control of CuO nanowires on copper thin films: Toward the development of pn nanojunction arrays. , 2013, , .		2
32	Fabrication of highly ordered hollow oxide nanostructures based on nanoscale Kirkendall effect and ostwald ripening. , 2013, , .		0
33	Ultra-thin films on transparent conductor oxides for the development of spectro-electrochemical transducers. Applied Surface Science, 2013, 276, 306-311.	6.1	0
34	Carbon nanotube growth at 420°C using nickel/carbon composite thin films as catalyst supports. Diamond and Related Materials, 2013, 34, 76-83.	3.9	20
35	Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale. Small, 2013, 9, 2838-2843.	10.0	66
36	Growth control, structure, chemical state, and photoresponse of CuO–CdS core–shell heterostructure nanowires. Nanotechnology, 2013, 24, 265603.	2.6	17

PIERRE-YVES PY TESSIER

#	Article	IF	CITATIONS
37	Evaluation of composition, mechanical properties and structure of nc-TiC/a-C:H coatings prepared by balanced magnetron sputtering. Surface and Coatings Technology, 2012, 211, 111-116.	4.8	27
38	Structural characterization and electrochemical behavior of titanium carbon thin films. Surface and Coatings Technology, 2012, 211, 192-195.	4.8	7
39	The influence of Ni content on the characteristics of C–Ni thin films. Surface and Coatings Technology, 2012, 211, 188-191.	4.8	7
40	Fabrication of a nickel nanowire mesh electrode suspended on polymer substrate. Nanotechnology, 2012, 23, 275603.	2.6	10
41	Shape control of nickel nanostructures incorporated in amorphous carbon films: From globular nanoparticles toward aligned nanowires. Journal of Applied Physics, 2012, 111, .	2.5	24
42	Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers. Beilstein Journal of Nanotechnology, 2012, 3, 846-851.	2.8	8
43	Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering. Journal Physics D: Applied Physics, 2012, 45, 015301.	2.8	86
44	Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes. Nanotechnology, 2011, 22, 435302.	2.6	23
45	Direct Synthesis of ZnO Nanowires on Nanopatterned Surface by Magnetron Sputtering. Chemical Vapor Deposition, 2011, 17, 337-341.	1.3	4
46	Synthesis of nickel-filled carbon nanotubes at 350 °C. Carbon, 2011, 49, 4595-4598.	10.3	25
47	XPS study of the surface composition modification of nc-TiC/C nanocomposite films under in situ argon ion bombardment. Thin Solid Films, 2011, 519, 3982-3985.	1.8	59
48	Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors. Electrochimica Acta, 2010, 55, 7916-7922.	5.2	17
49	Microstructure and composition of TiC/a-C:H nanocomposite thin films deposited by a hybrid IPVD/PECVD process. Surface and Coatings Technology, 2010, 204, 1880-1883.	4.8	35
50	Response to "Comment on â€~Carbon nanowalls as material for electrochemical tranducers' ―[Appl. Phys. Lett. 96 126102 (2010)]. Applied Physics Letters, 2010, 96, 126103.	3.3	2
51	Titanium carbide/carbon composite nanofibers prepared by a plasma process. Nanotechnology, 2010, 21, 435603.	2.6	13
52	Carbon nanowalls as material for electrochemical transducers. Applied Physics Letters, 2009, 95, .	3.3	47
53	Ionized Physical Vapour Deposition combined with PECVD, for synthesis of carbon–metal nanocomposite thin films. Solid State Sciences, 2009, 11, 1824-1827.	3.2	14
54	Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces. Electrochimica Acta, 2009, 54, 3026-3032.	5.2	29

#	Article	IF	CITATIONS
55	Temperature effect on the nitrogen insertion in carbon nitride films deposited by ECR. Diamond and Related Materials, 2009, 18, 1091-1097.	3.9	8
56	Relation between residual stresses and microstructure in Mo(Cr) thin films elaborated by ionized magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2247-2251.	4.8	8
57	Improvement of dielectric properties of BLT thin films deposited by magnetron sputtering. Journal of Physics: Conference Series, 2008, 94, 012006.	0.4	2
58	Current developments in ionised physical vapour deposition by magnetron sputtering — state of the art — prospects for the future in terms of applications. Surface Engineering, 2008, 24, 319-321.	2.2	2
59	Integration of a carbon nanotube based electrode in silicon microtechnology to fabricate electrochemical transducers. Nanotechnology, 2008, 19, 435502.	2.6	8
60	Impact of magnetron configuration on plasma and film properties of sputtered aluminum nitride thin films. Journal of Applied Physics, 2008, 104, .	2.5	32
61	Epitaxial growth of aluminum nitride on AlGaN by reactive sputtering at low temperature. Applied Physics Letters, 2008, 93, 052905.	3.3	21
62	Thickness and substrate effects on AlN thin film growth at room temperature. EPJ Applied Physics, 2008, 43, 309-313.	0.7	34
63	Small scale mechanical properties of polycrystalline materials: in situ diffraction studies. International Journal of Nanotechnology, 2008, 5, 609.	0.2	4
64	TWO STEP REACTIVE MAGNETRON SPUTTERING OF BLT THIN FILMS. Integrated Ferroelectrics, 2007, 94, 94-104.	0.7	2
65	Carbon nanochannels elaborated by buckle delamination control on patterned substrates. Applied Physics Letters, 2007, 91, .	3.3	2
66	Examination of the electrochemical reactivity of screen printed carbon electrode treated by radio-frequency argon plasma. Electrochemistry Communications, 2007, 9, 1798-1804.	4.7	19
67	Magnetron Sputtering of Aluminium Nitride Thin Films for Thermal Management. Plasma Processes and Polymers, 2007, 4, S1-S5.	3.0	12
68	Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study. Electrochimica Acta, 2007, 52, 5053-5061.	5.2	10
69	Template synthesis of carbon nanotubes from porous alumina matrix on silicon. Microelectronic Engineering, 2006, 83, 2432-2436.	2.4	12
70	Residual stress control in MoCr thin films deposited by ionized magnetron sputtering. Surface and Coatings Technology, 2006, 200, 6549-6553.	4.8	12
71	Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition. Thin Solid Films, 2006, 495, 86-91.	1.8	31
72	In situ tensile tests in SEM of sputtered CNx films deposited on Ti6Al4V substrate: effect of film thickness and plasma surface pretreatment. Thin Solid Films, 2005, 482, 324-329.	1.8	3

PIERRE-YVES PY TESSIER

#	Article	IF	CITATIONS
73	Nitrogen effect on the electrical properties of CNx thin films deposited by reactive magnetron sputtering. Thin Solid Films, 2005, 482, 258-263.	1.8	51
74	Characterizations of CNx thin films made by ionized physical vapor deposition. Thin Solid Films, 2005, 482, 192-196.	1.8	8
75	Improved film deposition of carbon and carbon nitride materials on patterned substrates by ionized magnetron sputtering. Surface and Coatings Technology, 2004, 180-181, 59-65.	4.8	13
76	Deposition of boron nitride films by PVD methods: transition from h-BN to c-BN. Surface and Coatings Technology, 2004, 180-181, 174-177.	4.8	17
77	EELS and NEXAFS structural investigations on the effects of the nitrogen incorporation in a-CNx films deposited by r.f. magnetron sputtering. Diamond and Related Materials, 2004, 13, 1433-1436.	3.9	27
78	Model for power coupled to RF planar magnetrons. Experimental validation and application to CNx thin film deposition. Surface and Coatings Technology, 2003, 174-175, 49-54.	4.8	5
79	Carbon nitride thin films as protective coatings for biomaterials: synthesis, mechanical and biocompatibility characterizations. Diamond and Related Materials, 2003, 12, 1066-1069.	3.9	34
80	Effect of a r.f. antenna on carbon nitride films deposited by ionized r.f. magnetron sputtering. Diamond and Related Materials, 2003, 12, 1093-1097.	3.9	20
81	Evidence for PT-ferroelectrics interface scenario of different fatigue behaviors between Bi4Ti3O12 and Bi3.25La0.75Ti3O12 thin film capacitors. Materials Science in Semiconductor Processing, 2002, 5, 179-182.	4.0	9
82	Effect of nitrogen incorporation in CNx thin films deposited by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 175-179.	4.8	27
83	Surface and bulk characterizations of CNx thin films made by r.f. magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 184-188.	4.8	10
84	Bonding structure of carbon nitride films deposited by reactive plasma beam sputtering. Diamond and Related Materials, 2001, 10, 1142-1146.	3.9	42
85	Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Applied Surface Science, 2000, 164, 72-83.	6.1	172
86	Carbon nitride thin films deposited by reactive plasma beam sputtering. Surface and Coatings Technology, 2000, 125, 295-300.	4.8	19
87	An XPS study of the SF6 reactive ion beam etching of silicon at low temperatures. Nuclear Instruments & Methods in Physics Research B, 1999, 155, 280-288.	1.4	21
88	Etching of Si at low temperatures using a SF6 reactive ion beam: Effect of the ion energy and current density. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2661-2669.	2.1	28
89	Neon ion beamâ€induced surface reactions of SF6 adsorbed molecules with silicon at low temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 234-239. 	2.1	5
90	Far ultraviolet photoelectric study of thin SnSe evaporated films. Physica Status Solidi (B): Basic Research, 1983, 117, 51-56.	1.5	38