Kang bin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1729321/publications.pdf

Version: 2024-02-01

687363 677142 25 519 13 22 citations h-index g-index papers 25 25 25 385 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	SrCdGeS ₄ and SrCdGeSe ₄ : Promising Infrared Nonlinear Optical Materials with Congruent-Melting Behavior. Crystal Growth and Design, 2019, 19, 1206-1214.	3.0	54
2	Ba ₃ (C ₃ N ₃ O ₃) ₂ : A New Phase of Barium Cyanurate Containing Parallel π-Conjugated Groups as a Birefringent Material Replacement for Calcite. Crystal Growth and Design, 2019, 19, 568-572.	3.0	49
3	From AgGaS ₂ to AgHgPS ₄ : vacancy defects and highly distorted HgS ₄ tetrahedra double-induced remarkable second-harmonic generation response. Journal of Materials Chemistry C, 2021, 9, 1062-1068.	5. 5	42
4	AXHg ₃ P ₂ S ₈ (A = Rb, Cs; X = Cl, Br): New Excellent Infrared Nonlinear Optical Materials with Mixedâ€Anion Chalcohalide Groups of Trigonal Planar [HgS ₂ X] ^{3â^²} and Tetrahedral [HgS ₃ X] ^{5â^²} . Advanced Optical Materials, 2021, 9, 2100563.	7.3	41
5	Two Mixed-Anion Units of [GeOSe ₃] and [GeO ₃ S] Originating from Partial Isovalent Anion Substitution and Inducing Moderate Second Harmonic Generation Response and Large Birefringence. Inorganic Chemistry, 2020, 59, 16716-16724.	4.0	39
6	Highly Distorted [HgS ₄] Motif-Driven Structural Symmetry Degradation and Strengthened Second-Harmonic Generation Response in the Defect Diamond-Like Chalcogenide Hg ₃ P ₂ S ₈ . ACS Applied Materials & District Company of the Company of th	8.0	34
7	Ba ₂ M(C ₃ N ₃ O ₃) ₂ (M = Sr, Pb): Band Engineering from pâ^Ï€ Interaction via Homovalent Substitution in Metal Cyanurates Containing Planar Ï€-Conjugated Groups. Inorganic Chemistry, 2019, 58, 9553-9556.	4.0	32
8	LiO ₄ tetrahedra lock the alignment of π-conjugated layers to maximize optical anisotropy in metal hydroisocyanurates. Inorganic Chemistry Frontiers, 2019, 6, 2850-2854.	6.0	29
9	EuHgGeSe ₄ and EuHgSnS ₄ : Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses. Inorganic Chemistry, 2020, 59, 18452-18460.	4.0	26
10	Designed synthesis and photophysical properties of multifunctional hybrid lanthanide complexes. RSC Advances, 2013, 3, 11367.	3.6	25
11	Syntheses, structures, optical properties, and electronic structures of KBaMSe 3 (M = As, Sb). Journal of Alloys and Compounds, 2014, 617, 287-291.	5.5	19
12	Intriguing substitution of conducting layer triggered enhancement of thermoelectric performance in misfit-layered (SnS)1.2(TiS2)2. Applied Physics Letters, 2017, 110, .	3.3	17
13	Investigation into Structural Variation from 3D to 1D and Strong Second Harmonic Generation of the AHgPS $<$ sub $>$ 4 $<$ sub $>$ 4 $<$ sup $>$ + $<$ su	13 1440rgBT	/Overlock 10
14	"Two in one― an unprecedented mixed anion, Ba ₂ (C ₃ N ₃ O ₃)(CNO), with the coexistence of isolated sp and sp ² ï€-conjugated groups. Dalton Transactions, 2019, 48, 14246-14250.	3.3	15
15	Thermal expansion and theoretical density of $2,2\hat{a}\in ^2$, $4,4\hat{a}\in ^2$, $4,4\hat{a}\in ^2$. Hexanitrostilbene. Journal of Materials Science, 2011, 46, 2536-2540.	3.7	13
16	Structural modification from centrosymmetric Rb ₄ Hg ₂ Ge ₂ S ₈ to noncentrosymmetric (Na ₃ Rb)Hg ₂ Ge ₂ S ₈ : mixed alkali metals strategy for infrared nonlinear optical material design. Journal of Materials Chemistry C, 2022, 10, 3300-3306.	5.5	13
17	Crystal Morphology Controlling of TATB by High Temperature Anti-Solvent Recrystallization. Propellants, Explosives, Pyrotechnics, 2012, 37, 172-178.	1.6	12
18	Thermoelectric modulation by intrinsic defects in superionic conductor Ag <i>x</i> CrSe2. Applied Physics Letters, 2020, 116, .	3.3	11

#	ARTICLE	IF	CITATION
19	Reducing Effective Mass for Advancing Thermoelectrics in Sb/Bi-Doped AgCrSe ₂ Compounds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36347-36354.	8.0	7
20	Structural Diversity and Giant Birefringence in Cyanates BaCNOX (X = Cl, Br, I, and CNO) Containing Linear $\ddot{\text{I}}$ \in -Conjugated Units: A Combined Experimental and Theoretical Study. Crystal Growth and Design, 2020, 20, 1242-1247.	3.0	6
21	SrAgAsS ₄ : A Noncentrosymmetric Sulfide with Good Infrared Nonlinear Optical Performance Induced by Aliovalent Substitution from Centrosymmetric SrGa ₂ S ₄ . Inorganic Chemistry, 2022, 61, 9205-9212.	4.0	6
22	Microwave dielectric properties of Nd:YAG transparent ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 9767-9771.	2.2	5
23	New quaternary chalcogenide Ba4HgAs2S10 originating from the combination of linear [HgS2]2â^ and tetrahedral [AsS4]3â^ modules. Dalton Transactions, 2020, 49, 13060-13065.	3.3	4
24	Alloying Cr2/3Te in AgCrSe2 compound for improving thermoelectrics. Applied Physics Letters, 2021, 118, 193902.	3.3	3
25	The synthesis and structure–property relation analysis of metal chalcohalide crystals Cs ₂ InPS ₄ X ₂ (X = Cl, Br) with mixed anions. Dalton Transactions, 2022, 51, 4728-4733.	3.3	1