Xiao-Sen Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/1728770/xiao-sen-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 271
 9,060
 52
 84

 papers
 h-index
 g-index

 281
 10,668
 5.3
 6.69

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
271	Review of natural gas hydrates as an energy resource: Prospects and challenges. <i>Applied Energy</i> , 2016 , 162, 1633-1652	10.7	912
270	Investigation into gas production from natural gas hydrate: A review. Applied Energy, 2016, 172, 286-32	210.7	334
269	Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in Shenhu Area of South China Sea. <i>Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of Shenhu Area of South China Sea. Energy & Deposits in Shenhu Area of Sh</i>	4.1	191
268	Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride. <i>Energy</i> , 2010 , 35, 3902-3908	7.9	170
267	Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator. <i>Applied Energy</i> , 2014 , 129, 274-286	10.7	163
266	Control Mechanisms for Gas Hydrate Production by Depressurization in Different Scale Hydrate Reservoirs. <i>Energy & Depressurization in Different Scale Hydrate Reservoirs</i> .	4.1	160
265	Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. <i>Energy</i> , 2011 , 36, 1394-1403	7.9	158
264	Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator. <i>Applied Energy</i> , 2012 , 93, 722-732	10.7	145
263	Gas Hydrate Formation Process for Capture of Carbon Dioxide from Fuel Gas Mixture. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11614-11619	3.9	143
262	Experimental Investigation of Production Behavior of Methane Hydrate under Ethylene Glycol Injection in Unconsolidated Sediment. <i>Energy & Documents</i> , 2007, 21, 3388-3393	4.1	139
261	Research progress of hydrate-based CO2 separation and capture from gas mixtures. <i>RSC Advances</i> , 2014 , 4, 18301-18316	3.7	135
260	The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea. <i>Journal of Petroleum Science and Engineering</i> , 2011 , 77, 49-68	4.4	122
259	Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. <i>Fuel</i> , 2014 , 117, 688-696	7.1	114
258	Equilibrium Hydrate Formation Conditions for the Mixtures of CO2 + H2 + Tetrabutyl Ammonium Bromide. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 2180-2184	2.8	112
257	Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment. <i>Applied Energy</i> , 2016 , 162, 372-381	10.7	105
256	CO2 (carbon dioxide) separation from CO2H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis. <i>Energy</i> , 2013 , 59, 719-72	2 3 ^{.9}	96
255	Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 720-727	6.7	93

(2012-2008)

254	Experimental Investigation into the Production Behavior of Methane Hydrate in Porous Sediment with Hot Brine Stimulation. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 9696-9702	3.9	91
253	Experimental Investigation into the Production Behavior of Methane Hydrate in Porous Sediment by Depressurization with a Novel Three-Dimensional Cubic Hydrate Simulator. <i>Energy & amp; Fuels</i> , 2011 , 25, 4497-4505	4.1	88
252	Gas hydrate equilibrium dissociation conditions in porous media using two thermodynamic approaches. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1464-1474	2.9	88
251	Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system. <i>Applied Energy</i> , 2013 , 110, 90-97	10.7	87
250	Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods. <i>Energy</i> , 2015 , 90, 1931-1948	7.9	84
249	Effects of Tetrabutyl-(ammonium/phosphonium) Salts on Clathrate Hydrate Capture of CO2 from Simulated Flue Gas. <i>Energy & Energy </i>	4.1	82
248	Precombustion Capture of Carbon Dioxide and Hydrogen with a One-Stage Hydrate/Membrane Process in the Presence of Tetra-n-butylammonium Bromide (TBAB). <i>Energy & Description (TBAB)</i> (25, 1302)	41309	82
247	Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator. <i>Applied Energy</i> , 2015 , 145, 69-79	10.7	80
246	A three-dimensional study on methane hydrate decomposition with different methods using five-spot well. <i>Applied Energy</i> , 2013 , 112, 83-92	10.7	78
245	Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 118, 1115-112	4 9	78
244	Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells. <i>Energy</i> , 2015 , 79, 315-324	7.9	77
243	Experimental and Numerical Studies on Gas Production from Methane Hydrate in Porous Media by Depressurization in Pilot-Scale Hydrate Simulator. <i>Energy & Energy & En</i>	4.1	75
242	Research progress on methane production from natural gas hydrates. RSC Advances, 2015, 5, 54672-546	99	74
241	Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator. <i>Fuel</i> , 2012 , 94, 486-494	7.1	74
240	Equilibrium Hydrate Formation Conditions for the Mixtures of Methane + Ionic Liquids + Water. Journal of Chemical & Engineering Data, 2011 , 56, 119-123	2.8	73
239	Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator. <i>Energy</i> , 2014 , 64, 298-306	7.9	72
238	Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province. <i>Energy</i> , 2012 , 40, 59-75	7.9	72
237	Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment. <i>Energy</i> , 2012 , 44, 358-366	7.9	69

236	Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent. <i>Applied Energy</i> , 2016 , 162, 1153-1159	10.7	68
235	Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands. <i>Applied Energy</i> , 2017 , 202, 282-292	10.7	67
234	Prediction of Gas Hydrate Formation Conditions in the Presence of Methanol, Glycerol, Ethylene Glycol, and Triethylene Glycol with the Statistical Associating Fluid Theory Equation of State. Industrial & Company C	3.9	67
233	Experimental Investigations into Gas Production Behaviors from Methane Hydrate with Different Methods in a Cubic Hydrate Simulator. <i>Energy & Energy & Energ</i>	4.1	65
232	Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand. <i>Applied Energy</i> , 2016 , 174, 181-191	10.7	64
231	Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme. <i>Energy</i> , 2018 , 160, 835-844	7.9	63
230	Clathrate Dissociation Conditions for Methane + Tetra-n-butyl Ammonium Bromide (TBAB) + Water. <i>Journal of Chemical & Data</i> , 2007, 52, 1916-1918	2.8	62
229	Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement. <i>Applied Energy</i> , 2018 , 217, 527-536	10.7	61
228	Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator. <i>Energy</i> , 2011 , 36, 3170-3178	7.9	61
227	Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir. <i>Applied Energy</i> , 2015 , 154, 995-1003	10.7	58
226	Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization. <i>Applied Energy</i> , 2016 , 181, 299-309	10.7	58
225	Experimental study on gas production from methane hydrate in porous media by SAGD method. <i>Applied Energy</i> , 2013 , 112, 1233-1240	10.7	57
224	Experimental study on characteristics of methane hydrate formation and dissociation in porous medium with different particle sizes using depressurization. <i>Fuel</i> , 2018 , 230, 37-44	7.1	57
223	Measurements of Water Permeability in Unconsolidated Porous Media with Methane Hydrate Formation. <i>Energies</i> , 2013 , 6, 3622-3636	3.1	56
222	Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff. <i>Applied Energy</i> , 2012 , 94, 48-57	10.7	54
221	Raman analysis on methane production from natural gas hydrate by carbon dioxidethethane replacement. <i>Energy</i> , 2015 , 79, 111-116	7.9	53
220	Kinetic studies of methane hydrate formation in porous media based on experiments in a pilot-scale hydrate simulator and a new model. <i>Chemical Engineering Science</i> , 2014 , 105, 220-230	4.4	52
219	Vapor l lquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT. <i>Fluid Phase Equilibria</i> , 2004 , 224, 111-118	2.5	52

(2012-2013)

218	Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. <i>Ecological Engineering</i> , 2013 , 60, 160-166	3.9	51
217	Experimental Investigation into Methane Hydrate Decomposition during Three-Dimensional Thermal Huff and Puff. <i>Energy & Decomposition during Three-Dimensional Managery (Composition during Three-Dimensional Puff)</i>	4.1	51
216	In situ hydrate dissociation using microwave heating: Preliminary study. <i>Energy Conversion and Management</i> , 2008 , 49, 2207-2213	10.6	50
215	Investigation of Interfacial Tensions for Carbon Dioxide Aqueous Solutions by Perturbed-Chain Statistical Associating Fluid Theory Combined with Density-Gradient Theory. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 8911-8917	3.9	49
214	Gas Production from Methane Hydrate in a Pilot-Scale Hydrate Simulator Using the Huff and Puff Method by Experimental and Numerical Studies. <i>Energy & Description</i> 2012, 26, 7183-7194	4.1	48
213	Evaluation of CO 2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 59, 64-69	6.3	47
212	Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation. <i>Applied Energy</i> , 2017 , 207, 562-572	10.7	46
211	The use of dual horizontal wells in gas production from hydrate accumulations. <i>Applied Energy</i> , 2013 , 112, 1303-1310	10.7	45
210	Experimental Investigation into Factors Influencing Methane Hydrate Formation and a Novel Method for Hydrate Formation in Porous Media. <i>Energy & Description of Energy 2013</i> , 27, 3751-3757	4.1	45
209	Experimental Investigation into the Production Behavior of Methane Hydrate under Methanol Injection in Quartz Sand. <i>Energy & Energy</i> 31, 5411-5418	4.1	43
208	Study on Pilot-Scale CO2Separation from Flue Gas by the Hydrate Method. <i>Energy & Description</i> 2014, 28, 1242-1248	4.1	43
207	The effect of hydrate promoters on gas uptake. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21769-21	73 7.6	43
206	Production performance of gas hydrate accumulation at the GMGS2-Site 16 of the Pearl River Mouth Basin in the South China Sea. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 27, 306-320	4.6	43
205	Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation. <i>Energy</i> , 2018 , 152, 34-45	7.9	42
204	Numerical analysis of methane hydrate decomposition experiments by depressurization around freezing point in porous media. <i>Fuel</i> , 2015 , 159, 925-934	7.1	41
203	Integrated Process Study on Hydrate-Based Carbon Dioxide Separation from Integrated Gasification Combined Cycle (IGCC) Synthesis Gas in Scaled-Up Equipment. <i>Energy & amp; Fuels</i> , 2012 , 26, 6442-6448	4.1	41
202	Evaluation of gas production from Qilian Mountain permafrost hydrate deposits in two-spot horizontal well system. <i>Cold Regions Science and Technology</i> , 2015 , 109, 87-98	3.8	39
201	Experimental Investigation of the Formation of Cyclopentane-Methane Hydrate in a Novel and Large-Size Bubble Column Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 5967-597	3.9	39

200	Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 417-425	5 ^{2.9}	39
199	Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst. <i>Bioresource Technology</i> , 2018 , 269, 346-354	11	39
198	Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment. <i>Langmuir</i> , 2016 , 32, 7975-84	4	37
197	Effect of graphite nanoparticles on CO2 hydrate phase equilibrium. <i>Fluid Phase Equilibria</i> , 2016 , 414, 23-28	2.5	37
196	Effects of Impermeable Boundaries on Gas Production from Hydrate Accumulations in the Shenhu Area of the South China Sea. <i>Energies</i> , 2013 , 6, 4078-4096	3.1	36
195	Investigation of Critical Properties and Surface Tensions for n-Alkanes by Perturbed-Chain Statistical Associating Fluid Theory Combined with Density-Gradient Theory and Renormalization-Group Theory. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8199-8206	3.9	36
194	Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates. <i>Fuel</i> , 2018 , 216, 255-265	7.1	36
193	Experimental Study on Methane Hydrate Dissociation by Depressurization in Porous Sediments. <i>Energies</i> , 2012 , 5, 518-530	3.1	35
192	Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs. <i>Energy</i> , 2017 , 125, 62-71	7.9	34
191	Numerical Investigation of Hydrate Dissociation Performance in the South China Sea with Different Horizontal Well Configurations. <i>Energies</i> , 2014 , 7, 4813-4834	3.1	34
190	Numerical Simulation of Gas Production from Natural Gas Hydrate Using a Single Horizontal Well by Depressurization in Qilian Mountain Permafrost. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 4424-4432	3.9	34
189	Evolution of Hydrate Dissociation by Warm Brine Stimulation Combined Depressurization in the South China Sea. <i>Energies</i> , 2013 , 6, 5402-5425	3.1	34
188	A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system. <i>Applied Energy</i> , 2016 , 176, 12-21	10.7	33
187	Thermodynamic Equilibrium Conditions for Simulated Landfill Gas Hydrate Formation in Aqueous Solutions of Additives. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3290-3295	2.8	33
186	Hydrate-Based Methane Separation from the Drainage Coal-Bed Methane with Tetrahydrofuran Solution in the Presence of Sodium Dodecyl Sulfate. <i>Energy & Dode Senergy & Dode </i>	4.1	33
185	Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells. <i>Energy</i> , 2015 , 90, 836-845	7.9	32
184	Methane recovery from natural gas hydrate with simulated IGCC syngas. <i>Energy</i> , 2017 , 120, 192-198	7.9	31
183	Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment. <i>Applied Energy</i> , 2017 , 204, 1526-1534	10.7	31

(2013-2018)

182	Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method. <i>Applied Energy</i> , 2018 , 211, 1171-1178	10.7	31
181	Experimental investigation into scaling models of methane hydrate reservoir. <i>Applied Energy</i> , 2014 , 115, 47-56	10.7	31
180	Vapor Liquid Equilibrium of Systems Containing Alcohols Using the Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 4953-4961	3.9	31
179	The use of heat-assisted antigravity drainage method in the two horizontal wells in gas production from the Qilian Mountain permafrost hydrate deposits. <i>Journal of Petroleum Science and Engineering</i> , 2014 , 120, 141-153	4.4	29
178	Phase Equilibrium and Dissociation Enthalpies for Cyclopentane + Methane Hydrates in NaCl Aqueous Solutions <i>Journal of Chemical & Data</i> , 2010, 55, 4444-4449	2.8	28
177	Study on Dissociation Behaviors of Methane Hydrate in Porous Media Based on Experiments and Fractional Dimension Shrinking-Core Model. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8263-8271	3.9	28
176	Natural Gas Hydrate Formation in an Ejector Loop Reactor: Preliminary Study. <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 7934-7940	3.9	28
175	Hydrate-based acidic gases capture for clean methane with new synergic additives. <i>Applied Energy</i> , 2017 , 207, 584-593	10.7	27
174	Investigation of Vaporlliquid Equilibria for Supercritical Carbon Dioxide and Hydrocarbon Mixtures by Perturbed-Chain Statistical Associating Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4364-4370	3.9	27
173	Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods. <i>Applied Energy</i> , 2020 , 277, 115575	10.7	27
172	Kinetic Behaviors of Methane Hydrate Formation in Porous Media in Different Hydrate Deposits. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 5464-5474	3.9	26
171	Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator. <i>Applied Energy</i> , 2019 , 251, 113405	10.7	25
170	Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran. <i>Applied Energy</i> , 2018 , 214, 92-102	10.7	25
169	Studies on UNIQUAC and SAFT equations for nonionic surfactant solutions. <i>Fluid Phase Equilibria</i> , 1998 , 153, 215-229	2.5	25
168	Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization. <i>Applied Energy</i> , 2019 , 239, 57-69	10.7	24
167	Preparation of Warm Brine in Situ Seafloor Based on the Hydrate Process for Marine Gas Hydrate Thermal Stimulation. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14142-14157	3.9	24
166	Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas. Journal of Natural Gas Chemistry, 2012 , 21, 501-507		24
165	Molecular dynamics simulation of methane hydrate dissociation by depressurisation. <i>Molecular Simulation</i> , 2013 , 39, 251-260	2	24

164	Numerical simulation of the improved gas production from low permeability hydrate reservoirs by using an enlarged highly permeable well wall. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 183, 106404	l·4	23
163	Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media. <i>Energies</i> , 2015 , 8, 1242-1255	.1	23
162	Effect of Hydrate Saturation on the Methane Hydrate Dissociation by Depressurization in Sediments in a Cubic Hydrate Simulator. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 2627 ³ , 2627	2637	23
161	Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus. <i>Fuel</i> , 2016 , 182, 446-453	7.1	23
160	Pilot-scale experimental test on gas production from methane hydrate decomposition using depressurization assisted with heat stimulation below quadruple point. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 131, 965-972	ļ.9	23
159	Effect of seawater ions on cyclopentane-methane hydrate phase equilibrium. <i>Fluid Phase Equilibria</i> , 2018 , 458, 272-277	2.5	23
158	Decomposition conditions of methane hydrate in marine sediments from South China Sea. <i>Fluid Phase Equilibria</i> , 2016 , 413, 110-115	5	22
157	Hydrate-based hydrogen purification from simulated syngas with synergic additives. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 2649-2659	6.7	22
156	Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system. <i>Applied Energy</i> , 2018 , 226, 916-923	10.7	22
155	Study on developing a novel continuous separation device and carbon dioxide separation by process of hydrate combined with chemical absorption. <i>Applied Energy</i> , 2019 , 255, 113791	20.7	22
154	Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite. <i>Journal of Molecular Modeling</i> , 2014 , 20, 2311	!	22
153	Phase Equilibrium and Dissociation Enthalpies for Hydrates of Various Water-Insoluble Organic Promoters with Methane. <i>Journal of Chemical & Data</i> , 2013, 58, 3249-3253	2.8	22
152	Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea. <i>Energies</i> , 2016 , 9, 222	.1	22
151	Research progress in hydrate-based technologies and processes in China: A review. <i>Chinese Journal of Chemical Engineering</i> , 2019 , 27, 1998-2013	.2	22
150	Formation Kinetics of Cyclopentane + Methane Hydrates in Brine Water Systems and Raman Spectroscopic Analysis. <i>Energy & Company</i> 2015, 29, 6104-6110	. .1	21
149	Coupling effect of porosity and hydrate saturation on the permeability of methane hydrate-bearing sediments. <i>Fuel</i> , 2020 , 269, 117425	7.1	21
148	Effects of particle and pore sizes on the formation behaviors of methane hydrate in porous silica gels. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 35, 1463-1471	µ.6	21
147	Energy and entropy analyses of hydrate dissociation in different scales of hydrate simulator. <i>Energy</i> , 2016 , 102, 176-186	7.9	20

(2018-2019)

146	Experimental studies on hydrogen hydrate with tetrahydrofuran by differential scanning calorimeter and in-situ Raman. <i>Applied Energy</i> , 2019 , 243, 1-9	10.7	19
145	Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges. <i>Energy and Environmental Science</i> ,	35.4	19
144	Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions. <i>Journal of Environmental Management</i> , 2009 , 90, 2831-40	7.9	18
143	Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane. <i>Applied Energy</i> , 2020 , 265, 114808	10.7	17
142	Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System. <i>Energies</i> , 2015 , 8, 10796-10817	3.1	17
141	Replacement of CH4 in Hydrate in Porous Sediments with Liquid CO2 Injection. <i>Chemical Engineering and Technology</i> , 2014 , 37, 2022-2029	2	17
140	Effect of temperature fluctuation on hydrate-based CO2 separation from fuel gas. <i>Journal of Natural Gas Chemistry</i> , 2011 , 20, 647-653		17
139	Optimization of the Production Pressure for Hydrate Dissociation by Depressurization. <i>Energy & Energy Energy Fuels</i> , 2020 , 34, 4296-4306	4.1	16
138	Hydrate-Based CO2 Capture from Integrated Gasification Combined Cycle Syngas with Tetra-n-butylammonium Bromide and Nano-Al2O3. <i>Energy & Energy & </i>	4.1	16
137	Crystal morphology-based kinetic study of carbon dioxide-hydrogen-tetra-n-butyl ammonium bromide hydrates formation in a static system. <i>Energy</i> , 2018 , 143, 546-553	7.9	16
136	Experimental study of methane hydrate dissociation in porous media with different thermal conductivities. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 144, 118528	4.9	16
135	Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores. <i>Journal of Chemical Physics</i> , 2006 , 125, 084716	3.9	16
134	Study on ionic surfactant solutions by SAFT equation incorporated with MSA. <i>Fluid Phase Equilibria</i> , 2000 , 168, 107-123	2.5	16
133	Permeability measurements of quartz sands with methane hydrate. <i>Chemical Engineering Science</i> , 2019 , 193, 1-5	4.4	16
132	The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes. <i>Applied Energy</i> , 2019 , 238, 195-201	10.7	15
131	On the acidBase stability of Keggin Al13 and Al30 polymers in polyaluminum coagulants. <i>Journal of Materials Science</i> , 2009 , 44, 3098-3111	4.3	15
130	Pore-scale analysis of relations between seepage characteristics and gas hydrate growth habit in porous sediments. <i>Energy</i> , 2021 , 218, 119503	7.9	15
129	The Formation of CH4 Hydrate in the Slit Nanopore between the Smectite Basal Surfaces by Molecular Dynamics Simulation. <i>Energy & Dolorows (Manager Park)</i> 2018, 32, 6467-6474	4.1	15

128	Large Scale Experimental Investigation on Influences of Reservoir Temperature and Production Pressure on Gas Production from Methane Hydrate in Sandy Sediment. <i>Energy & Description</i> 2016, 30, 2760-2770	4.1	14
127	Tri-Axial Shear Tests on Hydrate-Bearing Sediments during Hydrate Dissociation with Depressurization. <i>Energies</i> , 2018 , 11, 1819	3.1	14
126	Hydrate-based Capture CO2 and Purification CH4 from Simulated Landfill Gas with Synergic Additives Based on Gas Solvent. <i>Energy Procedia</i> , 2014 , 61, 450-454	2.3	14
125	Experimental and modeling study on controlling factor of methane hydrate formation in silica gels. <i>Applied Energy</i> , 2018 , 225, 827-834	10.7	14
124	Seawater Desalination by Hydrate Formation and Pellet Production Process. <i>Energy Procedia</i> , 2019 , 158, 5144-5148	2.3	13
123	Application of the NICA-Donnan approach to calculate equilibrium between proton and metal ions with lignocellulosic materials. <i>Journal of Colloid and Interface Science</i> , 2005 , 281, 267-74	9.3	13
122	Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus. <i>Applied Energy</i> , 2020 , 262, 114397	10.7	12
121	A review of numerical research on gas production from natural gas hydrates in China. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 85, 103713	4.6	12
120	Recovery of methane from coal-bed methane gas mixture via hydrate-based methane separation method by adding anionic surfactants. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2018 , 40, 1019-1026	1.6	12
119	Influence of Particle Size on the Heat and Mass Transfer Characteristics of Methane Hydrate Formation and Decomposition in Porous Media. <i>Energy & Decomposition Section</i> 2021, 35, 2153-2164	4.1	12
118	Measurement of Permeability and Verification of Kozeny-Carman Equation Using Statistic Method. Energy Procedia, 2017 , 142, 4104-4109	2.3	11
117	Phase equilibrium and Raman spectroscopic studies of semi-clathrate hydrates for methane, nitrogen and tetra-butyl-ammonium fluoride. <i>Fluid Phase Equilibria</i> , 2016 , 413, 48-52	2.5	11
116	Equilibrium Hydrate Formation Conditions of CO2 + N2 + SO2 Ternary Simulated Flue Gas in SO2 and Tetra-n-butylammonium Bromide Containing Aqueous Solutions. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 103-109	2.8	11
115	Experimental Investigation into Gas Hydrate Formation in Sediments with Cooling Method in Three-Dimensional Simulator. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14208-14216	3.9	11
114	Evaluation of Alternative Horizontal Well Designs for Gas Production from Hydrate Deposits in the Shenhu Area, South China Sea 2010 ,		11
113	Permeability determination of hydrate sediments and a new reduction model considering hydrate growth habit. <i>Fuel</i> , 2020 , 279, 118297	7.1	11
112	Methane hydrate formation and dissociation behaviors in montmorillonite. <i>Chinese Journal of Chemical Engineering</i> , 2019 , 27, 1212-1218	3.2	11
111	Combined styles of depressurization and electrical heating for methane hydrate production. <i>Applied Energy</i> , 2021 , 282, 116112	10.7	11

(2021-2020)

110	Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method. <i>Energy</i> , 2020 , 199, 117420	7.9	10
109	Influence of Hydrate Saturation on Methane Hydrate Dissociation by Depressurization in Conjunction with Warm Water Stimulation in the Silica Sand Reservoir. <i>Energy & Description</i> 29, 7875-7884	4.1	10
108	The optimization mechanism for gas hydrate dissociation by depressurization in the sediment with different water saturations and different particle sizes. <i>Energy</i> , 2021 , 215, 119129	7.9	10
107	Permeability experiments on the methane hydrate in quartz sands and its model verification. <i>Natural Gas Industry B</i> , 2018 , 5, 298-305	1.5	9
106	Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations. <i>Energies</i> , 2017 , 10, 561	3.1	9
105	Microscale Experiment and Pore-Network Modeling Analysis of Growth Habit, Pore Structure, and Permeability of Hydrate-Bearing Sediments. <i>Energy & Energy & </i>	4.1	9
104	A novel method for evaluating effects of promoters on hydrate formation. <i>Energy</i> , 2016 , 102, 567-575	7.9	9
103	Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis. <i>Energy</i> , 2020 , 198, 117316	7.9	9
102	Permeability measurement and discovery of dissociation process of hydrate sediments. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 75, 103155	4.6	8
101	Experimental Investigation on the Production Behaviors of Methane Hydrate in Sandy Sediments by Different Depressurization Strategies. <i>Energy Technology</i> , 2018 , 6, 2501-2511	3.5	8
100	Analysis of Hydrate Heterogeneous Distribution Effects on Mechanical Characteristics of Hydrate-Bearing Sediments. <i>Energy & Energy & 19</i> , 2021, 35, 4914-4924	4.1	8
99	Clathrate hydrate dissociation conditions and structure of the methane + cyclopentane + trimethylene sulfide hydrate in NaCl aqueous solution. <i>Fluid Phase Equilibria</i> , 2016 , 425, 305-311	2.5	8
98	Gas Permeability and Production Potential of Marine Hydrate Deposits in South China Sea. <i>Energies</i> , 2019 , 12, 4117	3.1	8
97	The determining factor of hydrate dissociation rate in the sediments with different water saturations. <i>Energy</i> , 2020 , 202, 117690	7.9	7
96	Experimental Investigation on Sediment Deformation during Gas Hydrate Decomposition for Different Hydrate Reservoir Types. <i>Energy Procedia</i> , 2017 , 142, 4110-4116	2.3	7
95	Numerical Investigation of the Production Behavior of Methane Hydrates under Depressurization Conditions Combined with Well-Wall Heating. <i>Energies</i> , 2017 , 10, 161	3.1	7
94	Solubility in the Na2CO3+ NaHCO3+ Na2SO4+ NaCl + H2O System and Its Subsystems at 150 °C. Journal of Chemical & Chemical & Camp; Engineering Data, 1999, 44, 813-819	2.8	7
93	Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media. <i>Energy</i> , 2021 , 226, 120401	7.9	7

92	Kinetic Study on the Process of Cyclopentane + Methane Hydrate Formation in NaCl Solution. <i>Energy & Description</i> Energy & Energy	4.1	7
91	Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes. <i>Applied Energy</i> , 2022 , 305, 117852	10.7	7
90	Advances of experimental study on gas production from synthetic hydrate reservoir in China. <i>Chinese Journal of Chemical Engineering</i> , 2019 , 27, 2213-2225	3.2	6
89	Numerical modeling for drilling fluid invasion into hydrate-bearing sediments and effects of permeability. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 77, 103239	4.6	6
88	The Effect of CO2 Partial Pressure on CH4 Recovery in CH4-CO2 Swap with Simulated IGCC Syngas. <i>Energies</i> , 2020 , 13, 1017	3.1	6
87	Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO2 Capture. <i>Energies</i> , 2018 , 11, 399	3.1	6
86	Phase Equilibrium and Dissociation Enthalpies of Trimethylene Sulfide + Methane Hydrates in Brine Water Systems. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 3717-3722	2.8	6
85	Large Scale Experimental Evaluation to Methane Hydrate Dissociation below Quadruple Point by Depressurization Assisted with Heat Stimulation. <i>Energy Procedia</i> , 2017 , 142, 4117-4123	2.3	6
84	Raman Spectroscopic Studies on Microscopic Mechanism of CP - CH 4 Mixture Hydrate. <i>Energy Procedia</i> , 2017 , 142, 3264-3269	2.3	6
83	Investigation of Vaporliquid Nucleation for Water and Heavy Water by Density Functional Theory. Journal of Physical Chemistry C, 2007, 111, 13938-13944	3.8	6
82	Catalytic depolymerization of Kraft lignin to produce liquid fuels via NiBn metal oxide catalysts. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1332-1339	5.8	6
81	Studies on temperature characteristics and initial formation interface during cyclopentane-methane hydrate formation in large-scale equipment with bubbling. <i>Applied Energy</i> , 2020 , 258, 114076	10.7	6
80	Gas permeability and shape factor of natural sediments in the South China Sea. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 83, 103626	4.6	6
79	Recent Advances on Natural Gas Hydrate Exploration and Development in the South China Sea. <i>Energy & Energy & E</i>	4.1	6
78	Experimental Investigation on Cyclopentane Methane Hydrate Formation Kinetics in Brine. <i>Energy & Energy Fuels</i> , 2017 , 31, 824-830	4.1	5
77	Gas Hydrate Formation Process for Simultaneously Capture of CO2 and H2S. <i>Energy Procedia</i> , 2019 , 158, 5705-5710	2.3	5
76	Formation and Dissociation Behavior Studies of Hydrogen Hydrate in the presence of Tetrahydrofuran by using High Pressure DSC. <i>Energy Procedia</i> , 2019 , 158, 5149-5155	2.3	5
75	Analyzing the applicability of in situ heating methods in the gas production from natural gas hydrate-bearing sediment with field scale numerical study. <i>Energy Reports</i> , 2020 , 6, 3291-3302	4.6	5

(2018-2020)

74	Effects of Salinity on Formation Behavior of Methane Hydrate in Montmorillonite. <i>Energies</i> , 2020 , 13, 231	3.1	5	
73	Experimental study of the drilling process in hydrate-bearing sediments under different circulation rates of drilling fluid. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 189, 107001	4.4	5	
72	Hydrate-based Methane Recovery from Coal Mine Methane Gas in Scale-up Equipment with Bubbling. <i>Energy Procedia</i> , 2017 , 105, 4983-4989	2.3	5	
71	Formation Behaviors of CO2 Hydrate in Kaoline and Bentonite Clays with Partially Water Saturated. <i>Energy Procedia</i> , 2017 , 143, 547-552	2.3	5	
70	Study of Hydrate-Based Methane Separation from Coal-Bed Methane in Scale-up Equipment with Bubbling. <i>Energy Procedia</i> , 2014 , 61, 812-816	2.3	5	
69	Methane Hydrate Dissociation by Depressurization in Sediments with Different Hydrate Saturations in Cubic Hydrate Simulator. <i>Energy Procedia</i> , 2014 , 61, 990-994	2.3	5	
68	Empirical Regularity of the Thermal Pressure Coefficient for Dense Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7654-7659	3.9	5	
67	Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation. <i>Energies</i> , 2019 , 12, 4227	3.1	5	
66	Investigation of the methane hydrate surface area during depressurization-induced dissociation in hydrate-bearing porous media. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 32, 324-334	3.2	5	
65	The consistency of the normalized hydrate dissociation rate in the hydrate simulator with different scales. <i>Fuel</i> , 2021 , 287, 119436	7.1	5	
64	Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method. <i>Energies</i> , 2021 , 14, 548	3.1	5	
63	Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties. <i>Energy</i> , 2021 , 229, 120736	7.9	5	
62	Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator. <i>Applied Energy</i> , 2021 , 304, 117750	10.7	5	
61	Hydrate-based Capture of Acidic Gases for Clean Fuels with New Synergic Additives. <i>Energy Procedia</i> , 2017 , 105, 648-653	2.3	4	
60	Comparison of CO2/H2/H2O Hydrate Formation Processes with Different Promoters. <i>Energy Procedia</i> , 2019 , 158, 5850-5855	2.3	4	
59	Raman Spectroscopic Study on Hydrate-based Carbon Dioxide Separation from Fuel Gas in the Presence of THF. <i>Energy Procedia</i> , 2017 , 143, 540-546	2.3	4	
58	Formation of cyclopentane - methane hydrates in brine systems and characteristics of dissolved ions. <i>Applied Energy</i> , 2016 , 184, 482-490	10.7	4	
57	Gas-Lifting Characteristics of Methane-Water Mixture and Its Potential Application for Self-Eruption Production of Marine Natural Gas Hydrates. <i>Energies</i> , 2018 , 11, 240	3.1	4	

56	Carbon dioxide and sulfur dioxide capture from flue gas by gas hydrate based process. <i>Energy Procedia</i> , 2017 , 142, 3454-3459	2.3	4
55	Hydrate-based Synchronously Capture of CO 2 and H 2 S for Clean H 2 with New Synergic Additives. <i>Energy Procedia</i> , 2017 , 142, 3427-3432	2.3	4
54	Gas Production from Methane Hydrate in Cubic Hydrate Simulator Using Depressurization Method by Experimental and Numerical Studies. <i>Energy Procedia</i> , 2014 , 61, 803-807	2.3	4
53	The Use of Huff and Puff Method in a Single Horizontal Well in Gas Production from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea 2010 ,		4
52	A New Molecular Thermodynamic Model for Osmotic Pressures in Micelle and Oil/Water Microemulsion Systems with Nonionic and Ionic Surfactants. <i>Industrial & Discourse Chemistry Research</i> , 1999 , 38, 2817-2823	3.9	4
51	Effect of hydrate distribution on effective thermal conductivity changes during hydrate formation in hydrate-bearing quartz sands. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 174, 121289	4.9	4
50	A kinetic study of methane hydrate formation in the corn Cobs lateral Company of the Company of	7.1	4
49	CO2/H2/H2O Hydrate Formation with TBAB and Nanoporous Materials. <i>Energy Procedia</i> , 2019 , 158, 586	6 2. 587	13
48	Effect of Fulvic Acid and Sodium Chloride on the Phase Equilibrium of Methane Hydrate in Mixed Sand¶lay Sediment. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 632-639	2.8	3
47	Study on methane hydrate distributions in laboratory samples by electrical resistance characteristics during hydrate formation. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 80, 1033	845 ⁶	3
46	Experimental Investigation into Methane Hydrate Dissociation by Thermal Stimulation with Dual Vertical Well. <i>Energy Procedia</i> , 2017 , 105, 4738-4744	2.3	3
45	Formation Behavior and Controlling Factor of Methane Hydrate in Porous Media. <i>Energy Procedia</i> , 2017 , 142, 4044-4049	2.3	3
44	Raman Spectroscopic Analysis on the Hydrate Formed in the Hydrate-Based Flue Gas Separation Process in Presence of Sulfur Dioxide and Tetra-n-butyl Ammonium Bromide. <i>Spectroscopy Letters</i> , 2015 , 48, 499-505	1.1	3
43	Similarity Analysis in Scaling a Gas Hydrates Reservoir. <i>Energies</i> , 2013 , 6, 2468-2480	3.1	3
42	Iron, Manganese and Copper Equilibria with Wood Fibres in Single Salt Aqueous Suspensions. <i>Canadian Journal of Chemical Engineering</i> , 2008 , 83, 537-547	2.3	3
41	Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction. <i>Chemical Engineering Science</i> , 2022 , 248, 117266	4.4	3
40	Effect of H2O Molecules on the CO2 Replacement in CH4 Hydrate Behavior by Molecular Simulation. <i>Energy & Description</i> 2021, 35, 8126-8140	4.1	3
39	Permeability investigation and hydrate migration of hydrateBearing silty sands and silt. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 89, 103891	4.6	3

(2021-2021)

38	Effective thermal conductivity changes of the hydrate-bearing quartz sands in depressurization and soaking. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 89, 103878	4.6	3	
37	Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: A numerical study. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 34, 267-277	3.2	3	
36	A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO capture <i>RSC Advances</i> , 2021 , 12, 664-670	3.7	2	
35	Formation Behaviors of Methane Hydrate in Partially Water-Saturated Porous Media with Different Particle Sizes. <i>Energy & Different</i> 2021, 35, 19399-19409	4.1	2	
34	The Relationship between Thermal Characteristics and Microstructure/Composition of Carbon Dioxide Hydrate in the Presence of Cyclopentane. <i>Energies</i> , 2021 , 14, 870	3.1	2	
33	Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers. <i>Energy</i> , 2022 , 238, 121752	7.9	2	
32	Large scale experimental investigation of influence of heat conduction and heat convection on hydrate dissociation by depressurization in sandy sediment. <i>Energy Procedia</i> , 2019 , 158, 5666-5672	2.3	1	
31	Study on the temperature characteristics in the process of cyclopentane-methane binary hydrate formation with a set of large-scale equipment. <i>Energy Procedia</i> , 2019 , 158, 5888-5894	2.3	1	
30	Drilling Simulation in Hydrate-bearing Sediments Using a Novel Hydrate Drilling Simulator. <i>Energy Procedia</i> , 2019 , 158, 5138-5143	2.3	1	
29	The SAFT for prediction of hydrate formation conditions of gas mixtures in the presence of methane, glycerol, ethylene glycol, and triethylene glycol. <i>Energy</i> , 2019 , 188, 116028	7.9	1	
28	Decomposition behaviors of methane hydrate in porous media below the ice melting point by depressurization. <i>Chinese Journal of Chemical Engineering</i> , 2019 , 27, 2207-2212	3.2	1	
27	Study on Temperature Characteristics of Hydrate Slurry during Cyclopentane Methane Hydrate Formation. <i>Energy & Description of the Energy Company of the Energy & Description of the Energy & Descript</i>	4.1	1	
26	Experimental simulation of gas hydrate decomposition in porous sediment. <i>Science China Earth Sciences</i> , 2013 , 56, 588-593	4.6	1	
25	Hydrate decomposition front within porous media under thermal stimulation and depressurization conditions: Macroscale to microscale. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 188, 12265	34.9	1	
24	Influence of Direct Current Voltage Accompanied by Charge Flow on CO2 Hydrate Formation. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	1	
23	Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors. <i>Applied Energy</i> , 2022 , 306, 118015	10.7	1	
22	Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation. <i>Energy</i> , 2021 , 231, 120826	7.9	1	
21	Visualization of Interactions between Depressurization-induced Hydrate Decomposition and Heat/Mass Transfer. <i>Energy</i> , 2021 , 122230	7.9	1	

20	Experimental Research on the Influence of Particle Size on Sand Production during Gas Hydrate Dissociation via Depressurization. <i>Energy & Energy &</i>	4.1	1
19	Numerical Evaluation of Long-Term Depressurization Production of a Multilayer Gas Hydrate Reservoir and Its Hydraulic Fracturing Applications. <i>Energy & Energy & Ene</i>	4.1	1
18	Review of methods and applications for promoting gas hydrate formation process. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 104528	4.6	1
17	Experimental study on the influence of brine concentration on the dissociation characteristics of methane hydrate. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 100, 104492	4.6	1
16	Gas-liquid asynchronous cooling promoting gas hydrate formation with high energy efficiency and its promoting mechanism. <i>Chemical Engineering Journal</i> , 2022 , 438, 135631	14.7	1
15	Experimental measurement and clustered equal diameter particle model of permeability with methane hydrate in glass beads. <i>Fuel</i> , 2022 , 320, 123924	7.1	1
14	Microscopic Insights into the Effect of the Initial Gas-Liquid Interface on Hydrate Formation by Raman in the System of Coalbed Methane and Tetrahydrofuran <i>ACS Omega</i> , 2021 , 6, 35467-35475	3.9	1
13	Effects of the NaCl Concentration and Montmorillonite Content on Formation Kinetics of Methane Hydrate. <i>Journal of Marine Science and Engineering</i> , 2022 , 10, 548	2.4	1
12	Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen. <i>Energy</i> , 2022 , 124414	7.9	1
11	Experimental investigation of influence of well spacing on hydrate dissociation by heat stimulation in sandy sediment. <i>Energy Procedia</i> , 2019 , 158, 5699-5704	2.3	О
10	Huff and Puff Induced Hydrate Dissociation Above and Below the Phase Equilibrium Point with Low Gas Saturation. <i>Energy Procedia</i> , 2017 , 105, 4796-4801	2.3	0
9	An experimental drilling apparatus used for evaluating drilling risks related to natural gas hydrate. <i>MethodsX</i> , 2020 , 7, 101019	1.9	O
8	Pilot-Scale Experimental Investigation of Multifield Coupling and Heterogeneity during Hydrate Dissociation. <i>Energy & Dissociation</i> . <i>Energy & Dissociation</i> . <i>Energy & Dissociation</i> . <i>Energy & Dissociation</i> .	4.1	0
7	Numerical Simulation of Hydrate Decomposition during the Drilling Process of the Hydrate Reservoir in the Northern South China Sea. <i>Energies</i> , 2022 , 15, 3273	3.1	O
6	Hydrate phase equilibrium and dissociation enthalpies for tetrahydrothiophene and different gas systems. <i>Fluid Phase Equilibria</i> , 2022 , 559, 113497	2.5	0
5	Study on Hydrate Production Behaviors by Depressurization Combined with Brine Injection in the Excess-Water Hydrate Reservoir. <i>Entropy</i> , 2022 , 24, 765	2.8	O
4	Experimental Investigation on Deformation of Natural Gas Hydrate in the Process of Decompressing. <i>Energy Procedia</i> , 2019 , 158, 5510-5516	2.3	
3	Effect of fulvic acid on methane hydrate formation and dissociation in mixed porous media. <i>Energy Procedia</i> , 2019 , 158, 5323-5328	2.3	

LIST OF PUBLICATIONS

2	Study on Vapor-Liquid Nucleation Rates for n-Alcohols by Density Functional Theory. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 2067-2073	4.9
1	Investigation of Gas-Water-Sand Fluid Resistivity Property as Potential Application for Marine Gas Hydrate Production. <i>Entropy</i> , 2022 , 24, 624	2.8