Christof Kluß

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1728653/publications.pdf Version: 2024-02-01

<u>Christof KuiãΫ</u>

#	Article	IF	CITATIONS
1	Renovation and conversion of permanent grass-clover swards to pasture or crops: Effects on annual N 2 O emissions in the year after ploughing. Soil and Tillage Research, 2018, 175, 119-129.	5.6	43
2	Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agriculture, Ecosystems and Environment, 2018, 265, 374-383.	5.3	41
3	Crop production for biogas and water protection—A trade-off?. Agriculture, Ecosystems and Environment, 2013, 177, 36-47.	5.3	40
4	ls organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agriculture, Ecosystems and Environment, 2020, 298, 106964.	5.3	39
5	Above- and belowground nitrogen uptake of winter catch crops sown after silage maize as affected by sowing date. European Journal of Agronomy, 2016, 79, 31-42.	4.1	38
6	Forage production in rotational systems generates similar yields compared to maize monocultures but improves soil carbon stocks. European Journal of Agronomy, 2018, 97, 11-19.	4.1	38
7	Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences, 2016, 13, 5221-5244.	3.3	29
8	Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany. Sustainability, 2020, 12, 3240.	3.2	22
9	Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling. Sustainability, 2021, 13, 394.	3.2	20
10	Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures. Agriculture (Switzerland), 2021, 11, 175.	3.1	18
11	Climate Change Effects on Temperate Grassland and Its Implication for Forage Production: A Case Study from Northern Germany. Agriculture (Switzerland), 2021, 11, 232.	3.1	18
12	Yield Progress in Forage Maize in NW Europe—Breeding Progress or Climate Change Effects?. Frontiers in Plant Science, 2020, 11, 1214.	3.6	17
13	Comparing chamber and eddy covariance based net ecosystem CO ₂ exchange of fen soils. Journal of Plant Nutrition and Soil Science, 2017, 180, 252-266.	1.9	16
14	Effects of catch crops on silage maize (Zea mays L.): yield, nitrogen uptake efficiency and losses. Nutrient Cycling in Agroecosystems, 2018, 110, 51-69.	2.2	16
15	Toward Specialized or Integrated Systems in Northwest Europe: On-Farm Eco-Efficiency of Dairy Farming in Germany. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	16
16	The effects of maize (Zea mays L.) hybrid and harvest date on above- and belowground biomass dynamics, forage yield and quality – A trade-off for carbon inputs?. European Journal of Agronomy, 2018, 92, 51-62.	4.1	15
17	Does the Admixture of Forage Herbs Affect the Yield Performance, Yield Stability and Forage Quality of a Grass Clover Ley?. Sustainability, 2020, 12, 5842.	3.2	12
18	Ecological Efficiency of Maize-Based Cropping Systems for Biogas Production. Bioenergy Research, 2015, 8, 1621-1635.	3.9	11

Christof Kluß

#	Article	IF	CITATIONS
19	Turnover rates of roots vary considerably across temperate forage species. Soil Biology and Biochemistry, 2019, 139, 107614.	8.8	11
20	Low assimilate partitioning to root biomass is associated with carbon losses at an intensively managed temperate grassland. Plant and Soil, 2021, 460, 31-50.	3.7	10
21	Yield potential and nitrogen dynamics of no-till silage maize (Zea mays L.) under maritime climate conditions. European Journal of Agronomy, 2019, 107, 30-42.	4.1	9
22	Nitrous Oxide Emission from Grazing Is Low across a Gradient of Plant Functional Diversity and Soil Conditions. Atmosphere, 2021, 12, 223.	2.3	9
23	Can arable forage production be intensified sustainably? A case study from northern Germany. Crop and Pasture Science, 2014, 65, 538.	1.5	8
24	Dryâ€matter losses and changes in nutrient concentrations in grass and maize silages stored in bunker silos. Grass and Forage Science, 2019, 74, 274-283.	2.9	7
25	Soil carbon dynamics of no-till silage maize in ley systems. Soil and Tillage Research, 2021, 209, 104957.	5.6	7
26	Species-Enriched Grass-Clover Mixtures Can Promote Bumblebee Abundance Compared with Intensively Managed Conventional Pastures. Agronomy, 2022, 12, 1080.	3.0	7
27	Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions In Vitro. Animals, 2021, 11, 1126.	2.3	6
28	Very Low Nitrogen Leaching in Grazed Ley-Arable-Systems in Northwest Europe. Agronomy, 2021, 11, 2155.	3.0	6
29	How Does Nitrogen Application Rate Affect Plant Functional Traits and Crop Growth Rate of Perennial Ryegrass-Dominated Permanent Pastures?. Agronomy, 2021, 11, 2499.	3.0	5
30	Grass Growth and N2O Emissions From Soil After Application of Jellyfish in Coastal Areas. Frontiers in Marine Science, 2021, 8, .	2.5	4
31	Integrating Crop-Livestock System Practices in Forage and Grain-Based Rotations in Northern Germany: Potentials for Soil Carbon Sequestration. Agronomy, 2022, 12, 338.	3.0	4
32	Grazing under Irrigation Affects N2O-Emissions Substantially in South Africa. Atmosphere, 2020, 11, 925.	2.3	3
33	Environmental Impact of Rotationally Grazed Pastures at Different Management Intensities in South Africa. Animals, 2021, 11, 1214.	2.3	3
34	GrasProg: Pasture Model for Predicting Daily Pasture Growth in Intensive Grassland Production Systems in Northwest Europe. Agronomy, 2022, 12, 1667.	3.0	2
35	Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests. Scientific Reports, 2022, 12,	3.3	1