
Shalini Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1728645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colloidal CdSe Nanoplatelets, A Model for Surface Chemistry/Optoelectronic Property Relations in Semiconductor Nanocrystals. Journal of the American Chemical Society, 2018, 140, 13292-13300.	13.7	126
2	Cross-Linked Poly(vinyl alcohol)â^'Poly(acrylonitrile- <i>co</i> -2-dimethylamino ethylmethacrylate) Based Anion-Exchange Membranes in Aqueous Media. Journal of Physical Chemistry B, 2010, 114, 198-206.	2.6	103
3	Compositionally Tunable Photoluminescence Emission in Cu ₂ ZnSn(S _{1â^'<i>x</i>} Se _{<i>x</i>}) ₄ Nanocrystals. Angewandte Chemie - International Edition, 2013, 52, 9120-9124.	13.8	98
4	A green method for the preparation of highly stable organic-inorganic hybrid anion-exchange membranes in aqueous media for electrochemical processes. Polymer Chemistry, 2010, 1, 1302.	3.9	75
5	Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals. Journal of the American Chemical Society, 2013, 135, 7835-7838.	13.7	74
6	Colloidal Cu2ZnSn(SSe)4 (CZTSSe) Nanocrystals: Shape and Crystal Phase Control to Form Dots, Arrows, Ellipsoids, and Rods. Chemistry of Materials, 2015, 27, 4742-4748.	6.7	49
7	Boosting the Er ³⁺ 1.5 μm Luminescence in CsPbCl ₃ Perovskite Nanocrystals for Photonic Devices Operating at Telecommunication Wavelengths. ACS Applied Nano Materials, 2020, 3, 4699-4707.	5.0	48
8	Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 3637-3644.	4.6	39
9	Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells. Journal of Physical Chemistry C, 2019, 123, 9640-9650.	3.1	39
10	Strong upconversion emission in CsPbBr ₃ perovskite quantum dots through efficient BaYF ₅ :Yb,Ln sensitization. Journal of Materials Chemistry C, 2019, 7, 2014-2021.	5.5	38
11	Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light: Science and Applications, 2021, 10, 112.	16.6	30
12	Colloidal WSe ₂ nanocrystals as anodes for lithium-ion batteries. Nanoscale, 2020, 12, 22307-22316.	5.6	26
13	Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3339-3344.	4.6	24
14	Colloidal synthesis of homogeneously alloyed CdSexS1â^'x nanorods with compositionally tunable photoluminescence. Chemical Communications, 2013, 49, 10293.	4.1	23
15	Occurrence of Polytypism in Compound Colloidal Metal Chalcogenide Nanocrystals, Opportunities, and Challenges. Journal of Physical Chemistry Letters, 2015, 6, 3141-3148.	4.6	23
16	Selective Phase Transformation of Wurtzite Cu2ZnSn(SSe)4 (CZTSSe) Nanocrystals into Zinc-Blende and Kesterite Phases by Solution and Solid State Transformations. Chemistry of Materials, 2016, 28, 5055-5062.	6.7	23
17	Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers. Scientific Reports, 2017, 7, 43884.	3.3	22
18	Assembly of binary, ternary and quaternary compound semiconductor nanorods: From local to device scale ordering influenced by surface charge. CrystEngComm, 2014, 16, 9446-9454.	2.6	21

SHALINI SINGH

#	Article	IF	CITATIONS
19	Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol–gel in aqueous media for electrochemical applications. Desalination, 2011, 276, 175-183.	8.2	19
20	Insights into Nucleation and Growth of Colloidal Quaternary Nanocrystals by Multimodal X-ray Analysis. ACS Nano, 2021, 15, 6439-6447.	14.6	18
21	Metal chalcogenide semiconductor nanocrystals synthesized from ion-conducting seeds and their applications. Journal of Materials Chemistry C, 2020, 8, 13868-13895.	5.5	17
22	Synthesis of Colloidal WSe ₂ Nanocrystals: Polymorphism Control by Precursor-Ligand Chemistry. Crystal Growth and Design, 2021, 21, 1451-1460.	3.0	15
23	Complete assembly of Cu2ZnSnS4 (CZTS) nanorods at substrate interfaces using a combination of self and directed organisation. Chemical Communications, 2016, 52, 11587-11590.	4.1	13
24	Ligand Adsorption Energy and the Postpurification Surface Chemistry of Colloidal Metal Chalcogenide Nanocrystals. Chemistry of Materials, 2021, 33, 2796-2803.	6.7	13
25	Two-dimensional copper based colloidal nanocrystals: synthesis and applications. Nanoscale, 2022, 14, 2885-2914.	5.6	13
26	Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires. PLoS ONE, 2014, 9, e108006.	2.5	11
27	Synthesis of Curved CuIn1–xGax(S1–ySey)2 Nanocrystals and Complete Characterization of Their Diffraction Contrast Effects. Chemistry of Materials, 2018, 30, 8679-8689.	6.7	10
28	Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets. Nano Letters, 2021, 21, 1702-1708.	9.1	9
29	Broadband Optical Phase Modulation by Colloidal CdSe Quantum Wells. Nano Letters, 2022, 22, 58-64.	9.1	8
30	Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions. ACS Nano, 2022, 16, 8917-8927.	14.6	8
31	Heteroaggregation assisted wet synthesis of core–shell silver–silica–cadmium selenide nanowires. Nanoscale, 2016, 8, 1200-1209.	5.6	7
32	Phosphine free synthesis of copper telluride nanocrystals in 1-D and 2-D shapes using Dipehylditelluride (DPDTe) as an air-stable source Nanotechnology, 2022, , .	2.6	3
33	The Surface Chemistry of Colloidal II-VI Two-Dimensional Nanoplatelets. , 0, , .		0
34	Synthesis of Colloidal Tungsten Diselenide (WSe2) Nanocrystals by Hot Injection Method. , 0, , .		0
35	Ligand Adsorption Energy and the Actual Surface Chemistry of Colloidal Nanocrystals. , 0, , .		0