Guillermo A Ferrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1728147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	7.3	403
2	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2914-2923.	5.2	214
3	Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon, 2017, 114, 50-58.	5.4	203
4	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589.	5.2	195
5	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106, 179-187.	5.4	185
6	One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon, 2018, 131, 193-200.	5.4	119
7	Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Materials, 2019, 18, 356-365.	9.5	118
8	Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon, 2015, 88, 239-251.	5.4	113
9	One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development. Chemistry of Materials, 2017, 29, 6900-6907.	3.2	110
10	Boosting High-Performance in Lithium–Sulfur Batteries via Dilute Electrolyte. Nano Letters, 2020, 20, 5391-5399.	4.5	93
11	A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. Journal of Materials Chemistry A, 2019, 7, 14280-14290.	5.2	77
12	One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 14439-14448.	5.2	74
13	Lowâ€Cost Chitosanâ€Derived Nâ€Doped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1707284.	7.8	68
14	N-doped microporous carbon microspheres for high volumetric performance supercapacitors. Electrochimica Acta, 2015, 168, 320-329.	2.6	66
15	A Green Route to High-Surface Area Carbons by Chemical Activation of Biomass-Based Products with Sodium Thiosulfate. ACS Sustainable Chemistry and Engineering, 2018, 6, 16323-16331.	3.2	57
16	Graphene-cellulose tissue composites for high power supercapacitors. Energy Storage Materials, 2016, 5, 33-42.	9.5	53
17	Sustainable Salt Templateâ€Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. Batteries and Supercaps, 2019, 2, 701-711.	2.4	41
18	Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. Chemistry - A European Journal, 2016, 22, 17351-17358.	1.7	37

#	Article	IF	CITATIONS
19	Free-standing hybrid films based on graphene and porous carbon particles for flexible supercapacitors. Sustainable Energy and Fuels, 2017, 1, 127-137.	2.5	37
20	Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via Triple Boundary Engineering Using Protic Ionic Liquids. ACS Applied Materials & Interfaces, 2019, 11, 11298-11305.	4.0	34
21	Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 278, 280-288.	2.2	34
22	A simple and general approach for <i>in situ</i> synthesis of sulfur–porous carbon composites for lithium–sulfur batteries. Sustainable Energy and Fuels, 2019, 3, 3498-3509.	2.5	23
23	Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodiumâ€lon Batteries Followed by In Situ Electrochemical Dilatometry. Energy Technology, 2021, 9, 2000880.	1.8	17
24	A Simple Approach towards Highly Dense Solvated Graphene Films for Supercapacitors. ChemNanoMat, 2016, 2, 33-36.	1.5	16
25	Iron–Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6560-6568.	2.5	16
26	Flexible, Freeâ€&tanding and Holey Graphene Paper for Highâ€Power Supercapacitors. ChemNanoMat, 2016, 2, 1055-1063.	1.5	15
27	A Practical Guide for Using Electrochemical Dilatometry as Operando Tool in Battery and Supercapacitor Research. Energy Technology, 2022, 10, .	1.8	13
28	In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes. Advanced Materials Interfaces, 2022, 9, 2100596.	1.9	10
29	Electrochemical Study of Prussian White Cathodes with Glymes – Pathway to Graphiteâ€Based Sodiumâ€Ion Battery Full Cells. Batteries and Supercaps, 2022, 5, .	2.4	10
30	CO2 Storage on Nanoporous Carbons. Green Energy and Technology, 2019, , 287-330.	0.4	8