
Cecilia Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1728051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs as promising peripheral sensors of prefrontal cortex developmental trajectory and psychiatric risk. Neuropsychopharmacology, 2022, 47, 387-388.	5.4	2
2	Custom-Built Operant Conditioning Setup for Calcium Imaging and Cognitive Testing in Freely Moving Mice. ENeuro, 2022, 9, ENEURO.0430-21.2022.	1.9	2
3	Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Molecular Psychiatry, 2022, 27, 2742-2750.	7.9	10
4	miR-218 in Adolescence Predicts and Mediates Vulnerability to Stress. Biological Psychiatry, 2021, 89, 911-919.	1.3	21
5	Adolescent dopamine development. , 2021, , 295-304.		9
6	Unique Effects of Social Defeat Stress in Adolescent Male Mice on the Netrin-1/DCC Pathway, Prefrontal Cortex Dopamine and Cognition. ENeuro, 2021, 8, ENEURO.0045-21.2021.	1.9	22
7	Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Frontiers in Neural Circuits, 2021, 15, 735625.	2.8	35
8	Mechanisms of cortical development: From the embryo to adulthood. Seminars in Cell and Developmental Biology, 2021, 118, 1-3.	5.0	1
9	MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Seminars in Cell and Developmental Biology, 2021, 118, 83-91.	5.0	19
10	DCCâ€related developmental effects of abused―versus therapeuticâ€like amphetamine doses in adolescence. Addiction Biology, 2020, 25, e12791.	2.6	20
11	MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Molecular Psychiatry, 2020, 25, 951-964.	7.9	51
12	The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Molecular Psychiatry, 2020, 25, 297-307.	7.9	61
13	Low-cost conditioned place preference setup including video recording and analysis of behaviour. MethodsX, 2020, 7, 100899.	1.6	3
14	The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biological Psychiatry, 2020, 88, 611-624.	1.3	36
15	Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers in Cell and Developmental Biology, 2020, 8, 487.	3.7	15
16	Neural function in <i>DCC</i> mutation carriers with and without mirror movements. Annals of Neurology, 2019, 85, 433-442.	5.3	12
17	Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral Cortex, 2019, 29, 3676-3686.	2.9	28
18	Guidance cues: linking drug use in adolescence with psychiatric disorders. Neuropsychopharmacology, 2019, 44, 225-226.	5.4	8

CECILIA FLORES

#	Article	IF	CITATIONS
19	An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue. MethodsX, 2018, 5, 1-7.	1.6	4
20	Mesocorticolimbic Connectivity and Volumetric Alterations in <i>DCC</i> Mutation Carriers. Journal of Neuroscience, 2018, 38, 4655-4665.	3.6	23
21	DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine AxonÂTargeting in Adolescence. Biological Psychiatry, 2018, 83, 181-192.	1.3	81
22	Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA. Neuropsychopharmacology, 2018, 43, 900-911.	5.4	25
23	Dopamine Development in the Mouse Orbital Prefrontal Cortex Is Protracted and Sensitive to Amphetamine in Adolescence. ENeuro, 2018, 5, ENEURO.0372-17.2017.	1.9	37
24	A non-invasive restraining system for awake mouse imaging. Journal of Neuroscience Methods, 2017, 287, 53-57.	2.5	32
25	Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan. Neuroscience, 2017, 346, 182-189.	2.3	11
26	Making Dopamine Connections in Adolescence. Trends in Neurosciences, 2017, 40, 709-719.	8.6	94
27	Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. Journal of Neuroscience, 2017, 37, 10855-10866.	3.6	122
28	DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biological Psychiatry, 2017, 81, 306-315.	1.3	108
29	dcc haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking. Behavioural Brain Research, 2016, 298, 27-31.	2.2	9
30	Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. ENeuro, 2016, 3, ENEURO.0009-16.2016.	1.9	11
31	Amphetamine in Adolescence Disrupts the Development of Medial Prefrontal Cortex Dopamine Connectivity in a dcc-Dependent Manner. Neuropsychopharmacology, 2015, 40, 1101-1112.	5.4	55
32	Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology, 2015, 232, 3719-3729.	3.1	18
33	Adolescence: a time of transition for the phenotype of dcc heterozygous mice. Psychopharmacology, 2014, 231, 1705-1714.	3.1	17
34	The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration. BMC Genomics, 2014, 15, 345.	2.8	22
35	Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience, 2014, 260, 36-46.	2.3	6
36	Haloperidol treatment downregulates DCC expression in the ventral tegmental area. Neuroscience Letters, 2014, 575, 58-62.	2.1	5

CECILIA FLORES

#	Article	IF	CITATIONS
37	Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine. Psychopharmacology, 2013, 230, 607-616.	3.1	19
38	<i>unc5c</i> haploinsufficient phenotype: striking similarities with the <i>dcc</i> haploinsufficiency model. European Journal of Neuroscience, 2013, 38, 2853-2863.	2.6	11
39	dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Translational Psychiatry, 2013, 3, e338-e338.	4.8	83
40	Juvenile exposure to methylphenidate reduces cocaine reward and alters netrin-1 receptor expression in adulthood. Behavioural Brain Research, 2012, 229, 202-207.	2.2	7
41	Association between schizophrenia and genetic variation in DCC: A case–control study. Schizophrenia Research, 2012, 137, 26-31.	2.0	53
42	Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology, 2012, 37, 956-969.	2.7	40
43	Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period. Psychopharmacology, 2011, 217, 505-514.	3.1	25
44	The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. Journal of Neuroscience, 2011, 31, 8381-8394.	3.6	104
45	Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. Journal of Psychiatry and Neuroscience, 2011, 36, 296-310.	2.4	51
46	Netrinâ€1 receptor in the ventral tegmental area is required for sensitization to amphetamine. European Journal of Neuroscience, 2010, 31, 1292-1302.	2.6	32
47	Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents. PLoS ONE, 2010, 5, e11463.	2.5	52
48	Prenatal Inflammation-Induced Hypoferremia Alters Dopamine Function in the Adult Offspring in Rat: Relevance for Schizophrenia. PLoS ONE, 2010, 5, e10967.	2.5	56
49	Altered netrinâ€1 receptor expression in dopamine terminal regions following neonatal ventral hippocampal lesions in the rat. Synapse, 2009, 63, 54-60.	1.2	8
50	Postâ€pubertal emergence of a dopamine phenotype in netrinâ€1 receptorâ€deficient mice. European Journal of Neuroscience, 2009, 30, 1318-1328.	2.6	30
51	Regulation of netrin-1 receptors by amphetamine in the adult brain. Neuroscience, 2007, 150, 764-773.	2.3	36
52	Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse, 2007, 61, 978-984.	1.2	27
53	Netrinâ€l receptorâ€deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. European Journal of Neuroscience, 2007, 26, 3215-3228.	2.6	60
54	Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Molecular Psychiatry, 2005, 10, 606-612.	7.9	70

CECILIA FLORES

#	Article	IF	CITATIONS
55	Regulation of Glutamate Carboxypeptidase II Function in Corticolimbic Regions of Rat Brain by Phencyclidine, Haloperidol, and Clozapine. Neuropsychopharmacology, 2003, 28, 1227-1234.	5.4	25
56	Astrocytic basic fibroblast growth factor expression in dopaminergic regions after perinatal anoxia. Biological Psychiatry, 2002, 52, 362-370.	1.3	15
57	Ovariectomy of Adult Rats Leads to Increased Expression of Astrocytic Basic Fibroblast Growth Factor in the Ventral Tegmental Area and in Dopaminergic Projection Regions of the Entorhinal and Prefrontal Cortex. Journal of Neuroscience, 1999, 19, 8665-8673.	3.6	38
58	Long-Lasting Induction of Astrocytic Basic Fibroblast Growth Factor by Repeated Injections of Amphetamine: Blockade by Concurrent Treatment with a Glutamate Antagonist. Journal of Neuroscience, 1998, 18, 9547-9555.	3.6	79
59	Fos-like immunoreactivity in the caudal diencephalon and brainstem following lateral hypothalamic self-stimulation. Behavioural Brain Research, 1997, 88, 275-279.	2.2	39
60	Fos-like immunoreactivity in forebrain regions following self-stimulation of the lateral hypothalamus and the ventral tegmental area. Behavioural Brain Research, 1997, 87, 239-251.	2.2	39
61	Increased ipsilateral expression of Fos following lateral hypothalamic self-stimulation. Brain Research, 1996, 720, 148-154.	2.2	39