William P King

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1727837/william-p-king-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 232
 9,485
 45
 89

 papers
 citations
 h-index
 g-index

 250
 10,709
 6.6
 6.24

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
232	Hierarchical data models improve the accuracy of feature level predictions for additively manufactured parts. <i>Additive Manufacturing</i> , 2022 , 51, 102621	6.1	
231	Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. <i>Current Opinion in Solid State and Materials Science</i> , 2022 , 26, 100966	12	2
230	High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. <i>Nature Energy</i> , 2022 , 7, 270-280	62.3	5
229	Large batch metrology on internal features of additively manufactured parts using X-ray computed tomography. <i>Journal of Materials Processing Technology</i> , 2022 , 306, 117605	5.3	0
228	Using machine learning to predict dimensions and qualify diverse part designs across multiple additive machines and materials. <i>Additive Manufacturing</i> , 2022 , 55, 102848	6.1	1
227	Equivalent Thermal Conductivity Prediction of Form-Wound Windings With Litz Wire Including Transposition Effects. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 1440-1449	4.3	3
226	Analyzing part accuracy and sources of variability for additively manufactured lattice parts made on multiple printers. <i>Additive Manufacturing</i> , 2021 , 40, 101924	6.1	2
225	Nanometer-scale capillary-driven flow and molecular weight govern polymer nanostructure deposition from a heated tip. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2021 , 39, 032601	1.3	
224	Phase Change Material Heat Sink for Transient Cooling of High-Power Devices. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 170, 121033	4.9	11
223	Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS Devices. <i>ACS Omega</i> , 2021 , 6, 4013-4021	3.9	2
222	Portable Pathogen Diagnostics Using Microfluidic Cartridges Made from Continuous Liquid Interface Production Additive Manufacturing. <i>Analytical Chemistry</i> , 2021 , 93, 10048-10055	7.8	3
221	Phase change material-based thermal energy storage. <i>Cell Reports Physical Science</i> , 2021 , 2, 100540	6.1	9
220	Ultra-power-dense heat exchanger development through genetic algorithm design and additive manufacturing. <i>Joule</i> , 2021 ,	27.8	10
219	Reduced Order Design Optimization of Liquid Cooled Heat Sinks. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2021 ,	2	2
218	Heat Transfer Enhancement of Single-Phase Internal Flows using Shape Optimization and Additively Manufactured Flow Structures. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 177, 121510	4.9	7
217	High power density thermal energy storage using additively manufactured heat exchangers and phase change material. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 153, 119591	4.9	26
216	A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. <i>Applied Physics Letters</i> , 2020 , 116, 071901	3.4	12

215	Emergency ventilator for COVID-19. PLoS ONE, 2020 , 15, e0244963	3.7	11
214	Spatial defects nanoengineering for bipolar conductivity in MoS. <i>Nature Communications</i> , 2020 , 11, 346	317.4	21
213	Rapid isothermal amplification and portable detection system for SARS-CoV-2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 22727-22735	11.5	164
212	. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020 , 10, 220-229	1.7	22
211	An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology,</i> 2019, 9, 2341-2351	1.7	14
210	High strength metallic wood from nanostructured nickel inverse opal materials. <i>Scientific Reports</i> , 2019 , 9, 719	4.9	28
209	Automated metrology and geometric analysis of additively manufactured lattice structures. <i>Additive Manufacturing</i> , 2019 , 28, 535-545	6.1	19
208	Thermal transport in layer-by-layer assembled polycrystalline graphene films. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	21
207	Heat transfer enhancement of internal laminar flows using additively manufactured static mixers. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 137, 292-300	4.9	24
206	Tailoring Surface Properties via Functionalized Hydrofluorinated Graphene Compounds. <i>Advanced Materials</i> , 2019 , 31, e1903424	24	9
205	Monolayer MoS Nanoribbon Transistors Fabricated by Scanning Probe Lithography. <i>Nano Letters</i> , 2019 , 19, 2092-2098	11.5	33
204	Mechanical properties of hexagonal lattice structures fabricated using continuous liquid interface production additive manufacturing. <i>Additive Manufacturing</i> , 2019 , 25, 10-18	6.1	22
203	High power density two-phase cooling in microchannel heat exchangers. <i>Applied Thermal Engineering</i> , 2019 , 148, 1271-1277	5.8	11
202	Controlling the Contact Times of Bouncing Droplets: Droplet Impact on Vibrating Surfaces. <i>Journal of Heat Transfer</i> , 2018 , 140,	1.8	2
201	Millimeter-scale liquid metal droplet thermal switch. <i>Applied Physics Letters</i> , 2018 , 112, 063505	3.4	25
200	3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. <i>Nature Energy</i> , 2018 , 3, 301-309	62.3	157
199	High power density air-cooled microchannel heat exchanger. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 118, 1276-1283	4.9	12
198	A microfabrication approach for making metallic mechanical metamaterials. <i>Materials and Design</i> , 2018 , 160, 147-168	8.1	13

197	Springboard Droplet Bouncing on Flexible Superhydrophobic Substrates. <i>Journal of Heat Transfer</i> , 2017 , 139,	1.8	4
196	Evidence of differential mass change rates between human breast cancer cell lines in culture. <i>Biomedical Microdevices</i> , 2017 , 19, 10	3.7	7
195	Condensate droplet size distribution on lubricant-infused surfaces. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 109, 187-199	4.9	96
194	Performance Modeling and Design of Ultra-High Power Microbatteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, E3122-E3131	3.9	21
193	Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films. <i>Physical Review Applied</i> , 2017 , 7,	4.3	44
192	Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy. <i>Nanotechnology</i> , 2017 , 28, 044003	3.4	3
191	Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. <i>Nanotechnology</i> , 2017 , 28, 355707	3.4	11
190	Droplet impact on vibrating superhydrophobic surfaces. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	26
189	In situ Measurements of Irradiation-Induced Creep of Nanocrystalline Copper at Elevated Temperatures. <i>Jom</i> , 2016 , 68, 2737-2741	2.1	6
188	Leave Your Phone at the Door 2016 ,		32
188	Leave Your Phone at the Door 2016 , Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328	4.9	32 90
		4.9	
187	Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328		90
187	Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328 . <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 2742-2748 Integration of high capacity materials into interdigitated mesostructured electrodes for high	2.9	90
187 186 185	Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328 . <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 2742-2748 Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. <i>Journal of Power Sources</i> , 2016 , 315, 308-315 Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe	2.9	90 5 21
187 186 185	Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328 . <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 2742-2748 Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. <i>Journal of Power Sources</i> , 2016 , 315, 308-315 Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. <i>Nature Nanotechnology</i> , 2016 , 11, 545-551	2.9	90 5 21 97
187 186 185 184 183	Water droplet impact on elastic superhydrophobic surfaces. <i>Scientific Reports</i> , 2016 , 6, 30328 . <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 2742-2748 Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. <i>Journal of Power Sources</i> , 2016 , 315, 308-315 Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. <i>Nature Nanotechnology</i> , 2016 , 11, 545-551 Trust Issues for Big Data about High-Value Manufactured Parts 2016 , High Power Density Pyroelectric Energy Conversion in Nanometer-Thick BaTiO3 Films. <i>Nanoscale</i>	2.9 8.9 28.7	90 5 21 97 4

(2014-2015)

179	Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation. <i>Nano Letters</i> , 2015 , 15, 4525-31	11.5	39
178	Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications. <i>RSC Advances</i> , 2015 , 5, 37006-37012	3.7	9
177	Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6573-8	11.5	144
176	Batch Fabrication of Transfer-Free Graphene-Coated Microcantilevers. <i>IEEE Sensors Journal</i> , 2015 , 1-1	4	1
175	Spray-on omniphobic ZnO coatings. RSC Advances, 2015, 5, 69243-69250	3.7	22
174	Shear stress characteristics of microtextured surfaces in gap-controlled hydrodynamic lubrication. <i>Tribology International</i> , 2015 , 82, 123-132	4.9	13
173	Direct measurements of irradiation-induced creep in micropillars of amorphous Cu56Ti38Ag6, Zr52Ni48, Si, and SiO2. <i>Journal of Applied Physics</i> , 2015 , 117, 024310	2.5	9
172	Evaluating Broader Impacts of Nanoscale Thermal Transport Research. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2015 , 19, 127-165	3.7	60
171	Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. <i>Lab on A Chip</i> , 2015 , 15, 839-47	7.2	59
170	Nanoscale thermal transport. II. 2003\(\textbf{Q}\)012. Applied Physics Reviews, 2014 , 1, 011305	17.3	1050
170 169	Nanoscale thermal transport. II. 2003\(\text{D012}. \) Applied Physics Reviews, 2014 , 1, 011305 Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014 , 26, 2999-3002	17.3	1050
	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip.		
169	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014, 26, 2999-3002 Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology,	24	16
169 168	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014, 26, 2999-3002 Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25, 014001 Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron	3.4	16
169 168 167	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014, 26, 2999-3002 Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25, 014001 Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron mobility transistors (HEMTs) 2014,	3.4	16 18 8
169 168 167	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014, 26, 2999-3002 Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25, 014001 Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron mobility transistors (HEMTs) 2014, Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst, The, 2014, 139, 100	24 3·4	16 18 8 58
169168167166165	Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Advanced Materials, 2014, 26, 2999-3002 Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25, 014001 Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron mobility transistors (HEMTs) 2014, Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst, The, 2014, 139, 100 Parallelization of thermochemical nanolithography. Nanoscale, 2014, 6, 1299-304 Micro-patterning of mammalian cells on suspended MEMS resonant sensors for long-term growth	24 3·4 3·7 ₅ 15	16 18 8 58 32

161	Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining. <i>Journal of Micromechanics and Microengineering</i> , 2014 , 24, 095020	2	39
160	Hydrothermal fabrication of three-dimensional secondary battery anodes. <i>Advanced Materials</i> , 2014 , 26, 7096-101	24	46
159	Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials. Journal of Micromechanics and Microengineering, 2014 , 24, 105006	2	14
158	Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability. <i>Nanotechnology</i> , 2014 , 25, 395501	3.4	15
157	Parallel nanoimaging using an array of 30 heated microcantilevers. <i>RSC Advances</i> , 2014 , 4, 24747-24754	3.7	8
156	Measuring physical properties of neuronal and glial cells with resonant microsensors. <i>Analytical Chemistry</i> , 2014 , 86, 4864-72	7.8	19
155	In situ creep measurements on micropillar samples during heavy ion irradiation. <i>Journal of Nuclear Materials</i> , 2014 , 451, 104-110	3.3	15
154	Silicon nano-mechanical resonators fabricated by using tip-based nanofabrication. <i>Nanotechnology</i> , 2014 , 25, 275301	3.4	10
153	Droplet Impingement and Vapor Layer Formation on Hot Hydrophobic Surfaces. <i>Journal of Heat Transfer</i> , 2014 , 136,	1.8	10
152	High-frequency thermal-electrical cycles for pyroelectric energy conversion. <i>Journal of Applied Physics</i> , 2014 , 116, 194509	2.5	30
151	Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices. <i>Review of Scientific Instruments</i> , 2014 , 85, 094904	1.7	6
150	Laser-induced nanoscale thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 12641-9	16.7	36
149	Direct observation of resistive heating at graphene wrinkles and grain boundaries. <i>Applied Physics Letters</i> , 2014 , 105, 143109	3.4	43
148	Speed dependence of thermochemical nanolithography for gray-scale patterning. <i>ChemPhysChem</i> , 2014 , 15, 2530-5	3.2	7
147	Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication. <i>Nanotechnology</i> , 2014 , 25, 455301	3.4	18
146	Heterogeneous nanometer-scale Joule and Peltier effects in sub-25 nm thin phase change memory devices. <i>Journal of Applied Physics</i> , 2014 , 116, 124508	2.5	11
145	Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane. <i>Nanotechnology</i> , 2014 , 25, 465501	3.4	6
144	Heated atomic force cantilever closed loop temperature control and application to high speed nanotopography imaging. <i>Sensors and Actuators A: Physical</i> , 2013 , 192, 27-33	3.9	9

(2013-2013)

143	Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. <i>Nanotechnology</i> , 2013 , 24, 444007	3.4	21
142	Bimaterial microcantilevers with black silicon nanocone arrays. <i>Sensors and Actuators A: Physical</i> , 2013 , 199, 143-148	3.9	10
141	Heterogeneity of spiral wear patterns produced by local heating on hous polymers. <i>Materials Chemistry and Physics</i> , 2013 , 141, 477-481	4.4	2
140	Heated atomic force microscope cantilever with high resistivity for improved temperature sensitivity. <i>Sensors and Actuators A: Physical</i> , 2013 , 201, 141-147	3.9	10
139	Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. <i>Review of Scientific Instruments</i> , 2013 , 84, 023709	1.7	34
138	High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. <i>Nature Communications</i> , 2013 , 4, 1732	17.4	449
137	Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. <i>Nature Nanotechnology</i> , 2013 , 8, 347-55	28.7	144
136	Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. <i>Applied Physics Letters</i> , 2013 , 102, 152110	3.4	22
135	Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer. <i>Nanotechnology</i> , 2013 , 24, 135501	3.4	5
134	Pyroelectric electron emission from nanometer-thick films of PbZrxTi1NO3. <i>Applied Physics Letters</i> , 2013 , 102, 192908	3.4	8
133	Nanoscale reduction of graphene fluoride via thermochemical nanolithography. ACS Nano, 2013, 7, 621	91847	36
132	Fabricating nanoscale chemical gradients with ThermoChemical NanoLithography. <i>Langmuir</i> , 2013 , 29, 8675-82	4	34
131	Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. <i>Tribology International</i> , 2013 , 57, 170-176	4.9	170
130	Micromechanical properties of hydrogels measured with MEMS resonant sensors. <i>Biomedical Microdevices</i> , 2013 , 15, 311-9	3.7	23
129	Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2013 , 31, 06FJ01	1.3	19
128	Thermomechanical Modeling of Scanning Joule Expansion Microscopy Imaging of Single-Walled Carbon Nanotube Devices. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	2
127	Thermal crosstalk in heated microcantilever arrays. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 025001	2	8
126	Zinc oxide inverse opal enzymatic biosensor. <i>Applied Physics Letters</i> , 2013 , 102, 253103	3.4	27

125	Temperature measurements of heated microcantilevers using scanning thermoreflectance microscopy. <i>Review of Scientific Instruments</i> , 2013 , 84, 034903	1.7	5
124	Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating. Journal of Applied Physics, 2013 , 114, 153511	2.5	1
123	Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices. <i>Applied Physics Letters</i> , 2013 , 102, 193503	3.4	28
122	High power primary lithium ion microbatteries. <i>Journal of Physics: Conference Series</i> , 2013 , 476, 012087	0.3	3
121	HEATED ATOMIC FORCE MICROSCOPE CANTILEVERS AND THEIR APPLICATIONS. <i>Annual Review of Heat Transfer</i> , 2013 , 16, 287-326	2.7	49
120	Deflection Sensitivity Calibration of Heated Microcantilevers Using Pseudo-Gratings. <i>IEEE Sensors Journal</i> , 2012 , 12, 2666-2667	4	
119	Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film. <i>Langmuir</i> , 2012 , 28, 13503-11	4	13
118	Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy. <i>ACS Nano</i> , 2012 , 6, 10267-75	16.7	23
117	Hydrogel Microstructures: Characterization of Mass and Swelling of Hydrogel Microstructures using MEMS Resonant Mass Sensor Arrays (Small 16/2012). <i>Small</i> , 2012 , 8, 2450-2450	11	1
116	Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever. <i>Nanotechnology</i> , 2012 , 23, 495302	3.4	11
115	Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. <i>ACS Nano</i> , 2012 , 6, 8015-21	16.7	64
114	High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012, 16, 186-1	982	145
113	Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding. <i>ACS Nano</i> , 2012 , 6, 4305-13	16.7	41
112	Lorentz force actuation of a heated atomic force microscope cantilever. <i>Nanotechnology</i> , 2012 , 23, 055	7 <u>9.9</u>	34
111	Impact of silicon nitride thickness on the infrared sensitivity of silicon nitride luminum microcantilevers. <i>Sensors and Actuators A: Physical</i> , 2012 , 185, 17-23	3.9	5
110	Grain boundary doping strengthens nanocrystalline copper alloys. <i>Scripta Materialia</i> , 2012 , 67, 720-723	5.6	61
109	Direct-write polymer nanolithography in ultra-high vacuum. <i>Beilstein Journal of Nanotechnology</i> , 2012 , 3, 52-6	3	7
108	Characterization of mass and swelling of hydrogel microstructures using MEMS resonant mass sensor arrays. <i>Small</i> , 2012 , 8, 2555-62	11	17

(2011-2012)

107	2-Land 3-Itemperature measurement of a heated microcantilever. <i>Review of Scientific Instruments</i> , 2012 , 83, 074902	1.7	4
106	Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip. <i>Nanotechnology</i> , 2012 , 23, 215301	3.4	41
105	Thermoelectric voltage at a nanometer-scale heated tip point contact. <i>Nanotechnology</i> , 2012 , 23, 0354	03.4	17
104	Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation. <i>Review of Scientific Instruments</i> , 2012 , 83, 015003	1.7	18
103	Nano-fabrication with a flexible array of nano-apertures. <i>Nanotechnology</i> , 2012 , 23, 175303	3.4	15
102	Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. <i>Nano Letters</i> , 2011 , 11, 5461-4	11.5	74
101	Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. <i>Nature Nanotechnology</i> , 2011 , 6, 287-90	28.7	238
100	Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces. <i>Advanced Functional Materials</i> , 2011 , 21, 1040-1050	15.6	28
99	Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. <i>Advanced Materials</i> , 2011 , 23, 3786-90	24	25
98	Nanomanufacturing: Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates (Adv. Mater. 33/2011). <i>Advanced Materials</i> , 2011 , 23, 3740-3740	24	13
97	Improved Nanotopography Sensing via Temperature Control of a Heated Atomic Force Microscope Cantilever. <i>IEEE Sensors Journal</i> , 2011 , 11, 2664-2670	4	12
96	High Precision Electrohydrodynamic Printing of Polymer Onto Microcantilever Sensors. <i>IEEE Sensors Journal</i> , 2011 , 11, 2246-2253	4	29
95	Template directed assembly of dynamic micellar nanoparticles. Soft Matter, 2011, 7, 10252	3.6	6
94	Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. <i>Nanotechnology</i> , 2011 , 22, 055709	3.4	12
93	Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 983-8	11.5	80
92	Microcantilever with integrated solid-state heater, conductive tip, and Schottky diode. <i>Sensors and Actuators A: Physical</i> , 2011 , 168, 351-357	3.9	2
91	Temperature-dependence of ink transport during thermal dip-pen nanolithography. <i>Applied Physics Letters</i> , 2011 , 99, 193101	3.4	23
90	Electrical noise characteristics of a doped silicon microcantilever heater-thermometer. <i>Applied Physics Letters</i> , 2011 , 99, 263107	3.4	4

89	Electrothermal Atomic-Force Microscope Cantilever With Integrated Heater and n-p-n Back-to-Back Diodes. <i>Journal of Microelectromechanical Systems</i> , 2011 , 20, 644-653	2.5	4
88	Self-heating in piezoresistive cantilevers. <i>Applied Physics Letters</i> , 2011 , 98, 223103	3.4	15
87	Electrical noise characteristics of a doped silicon microcantilever heater-thermometer 2010,		2
86	Natural advection from a microcantilever heat source. <i>Applied Physics Letters</i> , 2010 , 96, 063113	3.4	2
85	High precision polymer deposition onto microcantilever sensors using electrohydrodynamic printing 2010 ,		1
84	Microstructured metal molds fabricated via investment casting. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 025025	2	17
83	High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle. <i>Nanotechnology</i> , 2010 , 21, 185705	3.4	52
82	A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements. <i>Nanotechnology</i> , 2010 , 21, 055503	3.4	5
81	Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. <i>Lab on A Chip</i> , 2010 , 10, 1135	5- 4 .12	45
80	Local nanoscale heating modulates single-asperity friction. <i>Nano Letters</i> , 2010 , 10, 4640-5	11.5	46
79	Maskless nanoscale writing of nanoparticle-polymer composites and nanoparticle assemblies using thermal nanoprobes. <i>Nano Letters</i> , 2010 , 10, 129-33	11.5	36
78	Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano, 2010 , 4, 3338-44	16.7	65
77	Nanoscale tunable reduction of graphene oxide for graphene electronics. <i>Science</i> , 2010 , 328, 1373-6	33.3	584
76	Piezoresistive Microcantilevers From Ultrananocrystalline Diamond. <i>Journal of Microelectromechanical Systems</i> , 2010 , 19, 1234-1242	2.5	9
75	Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. <i>Acta Biomaterialia</i> , 2010 , 6, 3514-23	10.8	39
74	Conformal ZnO nanocomposite coatings on micro-patterned surfaces for superhydrophobicity. <i>Thin Solid Films</i> , 2010 , 518, 5426-5431	2.2	45
73	Linear ripples and traveling circular ripples produced on polymers by thermal AFM probes. <i>Physical Review B</i> , 2009 , 79,	3.3	27
72	Application of the thermal flash technique for low thermal diffusivity micro/nanofibers. <i>Review of Scientific Instruments</i> , 2009 , 80, 036103	1.7	16

(2008-2009)

71	Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. <i>Applied Physics Letters</i> , 2009 , 94, 243503	3.4	7	
70	Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. <i>Applied Physics Letters</i> , 2009 , 95, 233108	3.4	18	
69	Mechanical design for tailoring the resonance harmonics of an atomic force microscope cantilever during tipBurface contact. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 115008	2	22	
68	Casting metal microstructures from a flexible and reusable mold. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 095016	2	40	
67	Temperature dependence of nanoscale friction investigated with thermal AFM probes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1226, 50201		2	
66	Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects. <i>Advanced Functional Materials</i> , 2009 , 19, 3696-3702	15.6	54	
65	The mechanics of polymer swelling on microcantilever sensors. <i>Microsystem Technologies</i> , 2009 , 15, 333	3- 3 . 4 0	12	
64	Silicon microcantilever hotplates with high temperature uniformity. <i>Sensors and Actuators A: Physical</i> , 2009 , 152, 160-167	3.9	23	
63	Cadherin-mediated cell-cell contact regulates keratinocyte differentiation. <i>Journal of Investigative Dermatology</i> , 2009 , 129, 564-72	4.3	43	
62	Thermal conduction between a heated microcantilever and a surrounding air environment. <i>Applied Thermal Engineering</i> , 2009 , 29, 1631-1641	5.8	49	
61	Electrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe. <i>Nano Letters</i> , 2009 , 9, 1356-61	11.5	23	
60	Rapid thermal analysis of energetic materials with microfabricated differential scanning calorimeters 2009 ,		2	
59	100 Nanometer Scale Resistive Heater-Thermometer on a Silicon Cantilever 2009 ,		1	
58	Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors. <i>IEEE Sensors Journal</i> , 2008 , 8, 1404-1410	4	30	
57	Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips. <i>Analytical Chemistry</i> , 2008 , 80, 3221-8	7.8	15	
56	Differential Scanning Calorimeter Based on Suspended Membrane Single Crystal Silicon Microhotplate. <i>Journal of Microelectromechanical Systems</i> , 2008 , 17, 1513-1525	2.5	23	
55	Liquid Operation of Silicon Microcantilever Heaters. <i>IEEE Sensors Journal</i> , 2008 , 8, 1805-1806	4	10	
54	Microthermogravimetry using a microcantilever hot plate with integrated temperature-compensated piezoresistive strain sensors. <i>Review of Scientific Instruments</i> , 2008 , 79, 0549	907	11	

53	The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. <i>Soft Matter</i> , 2008 , 4, 1844	3.6	28
52	Improved All-Silicon Microcantilever Heaters With Integrated Piezoresistive Sensing. <i>Journal of Microelectromechanical Systems</i> , 2008 , 17, 432-445	2.5	22
51	Size Effect on the Thermal Conductivity of Thin Metallic Films Investigated by Scanning Joule Expansion Microscopy. <i>Journal of Heat Transfer</i> , 2008 , 130,	1.8	30
50	Experimental Investigation on the Heat Transfer Between a Heated Microcantilever and a Substrate. <i>Journal of Heat Transfer</i> , 2008 , 130,	1.8	37
49	Inducing Nanoscale Morphology Changes of Pentaerythritol Tetranitrate Using a Heated Atomic Force Microscope Cantilever. <i>Journal of Energetic Materials</i> , 2008 , 27, 1-16	1.6	1
48	Molecular confinement accelerates deformation of entangled polymers during squeeze flow. <i>Science</i> , 2008 , 322, 720-4	33.3	103
47	A semianalytical solution for the 3Imethod including the effect of heater thermal conduction. <i>Journal of Applied Physics</i> , 2008 , 103, 113517	2.5	11
46	Variable temperature thin film indentation with a flat punch. <i>Review of Scientific Instruments</i> , 2008 , 79, 013904	1.7	17
45	Modeling and Simulation of the Interface Temperature Between a Heated Silicon Tip and a Substrate. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2008 , 12, 98-115	3.7	39
44	A Compact Approach to On-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2008 , 130,	2	20
43	Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. <i>Scanning</i> , 2008 , 30, 197-202	1.6	20
42	Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography. <i>Microelectronic Engineering</i> , 2008 , 85, 934-936	2.5	34
41	Temperature-dependent thermomechanical noise spectra of doped silicon microcantilevers. Sensors and Actuators A: Physical, 2008 , 145-146, 37-43	3.9	18
40	Microcantilever hotplates with temperature-compensated piezoresistive strain sensors. <i>Sensors and Actuators A: Physical</i> , 2008 , 143, 181-190	3.9	20
39	Phase change and cooling characteristics of microjets measured using microcantilever heaters. <i>Sensors and Actuators A: Physical</i> , 2008 , 147, 64-69	3.9	7
38	Thermal Metrology of Silicon Microstructures Using Raman Spectroscopy. <i>IEEE Transactions on Components and Packaging Technologies</i> , 2007 , 30, 200-208		28
37	Frequency-Dependent Electrical and Thermal Response of Heated Atomic Force Microscope Cantilevers. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 213-222	2.5	40
36	Heated-Tip AFM: Applications in Nanocomposite Polymer Membranes and Energetic Materials. Microscopy Today, 2007, 15, 20-25	0.4	

35	Nanoindentation of shape memory polymer networks. <i>Polymer</i> , 2007 , 48, 3213-3225	3.9	86
34	Characterization of liquid and gaseous micro- and nanojets using microcantilever sensors. <i>Sensors and Actuators A: Physical</i> , 2007 , 134, 128-139	3.9	13
33	Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. <i>Pharmaceutical Research</i> , 2007 , 24, 2048-54	4.5	39
32	Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. <i>Biomaterials</i> , 2007 , 28, 2202-10	15.6	198
31	Microcantilever hotplates: Design, fabrication, and characterization. <i>Sensors and Actuators A: Physical</i> , 2007 , 136, 291-298	3.9	45
30	Thermal conduction from microcantilever heaters in partial vacuum. <i>Journal of Applied Physics</i> , 2007 , 101, 014906	2.5	50
29	Heat Transfer Between a Heated Microcantilever and the Substrate 2007, 805		
28	Thermomechanical Formation of Nanoscale Polymer Indents With a Heated Silicon Tip. <i>Journal of Heat Transfer</i> , 2007 , 129, 1600-1604	1.8	15
27	Contact potential measurement using a heated atomic force microscope tip. <i>Applied Physics Letters</i> , 2007 , 91, 143111	3.4	14
26	Topography imaging with a heated atomic force microscope cantilever in tapping mode. <i>Review of Scientific Instruments</i> , 2007 , 78, 043709	1.7	35
25	Low temperature characterization of heated microcantilevers. <i>Journal of Applied Physics</i> , 2007 , 101, 09	94 5 0 5 4	16
24	Microcantilever actuation via periodic internal heating. Review of Scientific Instruments, 2007, 78, 1261	02 1.7	24
23	Reversible Nanoscale Local Wettability Modifications by Thermochemcial Nanolithography. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1059, 1		
22	High-speed, sub-15 nm feature size thermochemical nanolithography. <i>Nano Letters</i> , 2007 , 7, 1064-9	11.5	149
21	Molding ceramic microstructures on flat and curved surfaces with and without embedded carbon nanotubes. <i>Journal of Micromechanics and Microengineering</i> , 2006 , 16, 2554-2563	2	16
20	Microwave assisted patterning of vertically aligned carbon nanotubes onto polymer substrates. Journal of Vacuum Science & Technology B, 2006 , 24, 1947		23
19	Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. <i>Applied Physics Letters</i> , 2006 , 88, 033107	3.4	39
18	Nanomaterial transfer using hot embossing for flexible electronic devices. <i>Applied Physics Letters</i> , 2006 , 88, 083112	3.4	20

17	Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters. <i>Journal of Microelectromechanical Systems</i> , 2006 , 15, 1644-1655	2.5	162
16	Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6774-5	16.4	59
15	1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips. <i>Macromolecules</i> , 2006 , 39, 6793-6795	5.5	92
14	Applications of Heated Atomic Force Microscope Cantilevers. <i>Nanoscience and Technology</i> , 2006 , 251-2	75 .6	4
13	Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. <i>Biomaterials</i> , 2006 , 27, 2487-94	15.6	192
12	Nanoscale thermal analysis of an energetic material. <i>Nano Letters</i> , 2006 , 6, 2145-9	11.5	102
11	Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, 24	14-242	.5 ¹⁶¹
10	Scanning Joule Expansion Microscopy of a Constriction in Thin Metallic Film. <i>Journal of Heat Transfer</i> , 2005 , 127, 809-809	1.8	4
9	The impact of subcontinuum gas conduction on topography measurement sensitivity using heated atomic force microscope cantilevers. <i>Physics of Fluids</i> , 2005 , 17, 100615	4.4	27
8	Design analysis of heated atomic force microscope cantilevers for nanotopography measurements. Journal of Micromechanics and Microengineering, 2005, 15, 2441-2448	2	48
7	Shape recovery of nanoscale imprints in a thermoset Bhape memory polymer. <i>Applied Physics Letters</i> , 2005 , 86, 103108	3.4	45
6	Nanoscale deposition of solid inks via thermal dip pen nanolithography. <i>Applied Physics Letters</i> , 2004 , 85, 1589-1591	3.4	140
5	Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements. <i>Applied Physics Letters</i> , 2004 , 85, 2086-2088	3.4	52
4	Polymer deformation and filling modes during microembossing. <i>Journal of Micromechanics and Microengineering</i> , 2004 , 14, 1625-1632	2	96
3	Hot embossing for micropatterned cell substrates. <i>Biomaterials</i> , 2004 , 25, 4767-75	15.6	134
2	Scanning probe microscopy. <i>Analytical Chemistry</i> , 2004 , 76, 3429-43	7.8	70
1	Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Applied Physics Letters, 2001 , 78, 1300-1302	3.4	150