P M Caldwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726851/publications.pdf

Version: 2024-02-01

147801 182427 4,774 53 31 51 h-index citations g-index papers 58 58 58 5710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Assessment of Nonhydrostatic and Hydrostatic Dynamical Cores at Seasonal Time Scales in the Energy Exascale Earth System Model (E3SM). Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	4
2	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.	3.6	17
3	Lower Tropospheric Processes: A Control on the Global Mean Precipitation Rate. Geophysical Research Letters, 2021, 48, e2020GL091169.	4.0	O
4	Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nature Climate Change, 2021, 11, 501-507.	18.8	74
5	Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002359.	3.8	6
6	Underestimated marine stratocumulus cloud feedback associated with overly active deep convection in models. Environmental Research Letters, 2021, 16, 074015.	5.2	5
7	Dissecting Anvil Cloud Response to Sea Surface Warming. Geophysical Research Letters, 2021, 48, e2021GL094049.	4.0	6
8	Convectionâ€Permitting Simulations With the E3SM Global Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002544.	3.8	23
9	Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2019GL085782.	4.0	759
10	Characterizing Tropical Cyclones in the Energy Exascale Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002024.	3.8	20
11	Performance and Accuracy Implications of Parallel Split Physicsâ€Dynamics Coupling in the Energy Exascale Earth System Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002080.	3.8	8
12	Numerically Relevant Timescales in the MG2 Microphysics Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001972.	3.8	6
13	Combining Emergent Constraints for Climate Sensitivity. Journal of Climate, 2020, 33, 7413-7430.	3.2	16
14	Assessment of Precipitating Marine Stratocumulus Clouds in the E3SMv1 Atmosphere Model: A Case Study from the ARM MAGIC Field Campaign. Monthly Weather Review, 2020, 148, 3341-3359.	1.4	6
15	The E3SM version 1 single-column model. Geoscientific Model Development, 2020, 13, 4443-4458.	3.6	11
16	Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 2019, 12, 2679-2706.	3.6	49
17	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	3.8	112
18	An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.	3.8	168

#	Article	IF	CITATIONS
19	Northern Hemisphere Blocking in â^1⁄425â€kmâ€Resolution E3SM v0.3 Atmosphereâ€Land Simulations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2465-2482.	3.3	7
20	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	3.8	404
21	The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam but a Tool for Model Evaluation and Development. Journal of Advances in Modeling Earth Systems, 2019, 11, 1381-1401.	3.8	36
22	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
23	Evaluating Emergent Constraints on Equilibrium Climate Sensitivity. Journal of Climate, 2018, 31, 3921-3942.	3.2	74
24	Impact of Physics Parameterization Ordering in a Global Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 481-499.	3.8	27
25	The atmospheric hydrologic cycle in the ACME v0.3 model. Climate Dynamics, 2018, 50, 3251-3279.	3.8	31
26	Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1). Geoscientific Model Development, 2018, 11, 1971-1988.	3.6	33
27	Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2618-2644.	3.8	105
28	Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress. Monthly Weather Review, 2018, 146, 3505-3544.	1.4	52
29	A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 1973-1993.	3.8	12
30	Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias in the Community Earth System Model (CESM). Journal of Climate, 2016, 29, 4617-4636.	3.2	224
31	Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity. Journal of Climate, 2016, 29, 513-524.	3.2	98
32	Progress in Fast, Accurate Multi-scale Climate Simulations. Procedia Computer Science, 2015, 51, 2006-2015.	2.0	2
33	Addressing Interdependency in a Multimodel Ensemble by Interpolation of Model Properties. Journal of Climate, 2015, 28, 5150-5170.	3.2	127
34	External Influences on Modeled and Observed Cloud Trends. Journal of Climate, 2015, 28, 4820-4840.	3.2	37
35	A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble. Journal of Climate, 2015, 28, 5171-5194.	3.2	272
36	Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions*. Journal of Climate, 2015, 28, 1288-1307.	3.2	177

#	Article	IF	Citations
37	Aerosol specification in single-column Community Atmosphere Model version 5. Geoscientific Model Development, 2015, 8, 817-828.	3.6	9
38	The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dynamics, 2015, 45, 375-396.	3.8	60
39	The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources. Journals of the Atmospheric Sciences, 2014, 71, 574-595.	1.7	72
40	On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dynamics, 2014, 42, 2603-2626.	3.8	151
41	Statistical significance of climate sensitivity predictors obtained by data mining. Geophysical Research Letters, 2014, 41, 1803-1808.	4.0	109
42	Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 2014, 14, 427-445.	4.9	41
43	On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. , 2014, 42, 2603.		1
44	Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 26-33.	7.1	117
45	CMIP3 Subtropical Stratocumulus Cloud Feedback Interpreted through a Mixed-Layer Model. Journal of Climate, 2013, 26, 1607-1625.	3.2	60
46	Human-induced global ocean warming onÂmultidecadal timescales. Nature Climate Change, 2012, 2, 524-529.	18.8	116
47	Separating signal and noise in atmospheric temperature changes: The importance of timescale. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	149
48	California Wintertime Precipitation Bias in Regional and Global Climate Models. Journal of Applied Meteorology and Climatology, 2010, 49, 2147-2158.	1.5	41
49	Preliminary Study of California Wintertime Model Wet Bias. Monthly Weather Review, 2010, 138, 3556-3571.	1.4	10
50	Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus. Journals of the Atmospheric Sciences, 2009, 66, 432-449.	1.7	39
51	Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 2009, 95, 499-521.	3.6	224
52	Response of a Subtropical Stratocumulus-Capped Mixed Layer to Climate and Aerosol Changes. Journal of Climate, 2009, 22, 20-38.	3.2	50
53	Mixed-Layer Budget Analysis of the Diurnal Cycle of Entrainment in Southeast Pacific Stratocumulus. Journals of the Atmospheric Sciences, 2005, 62, 3775-3791.	1.7	103