List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172671/publications.pdf Version: 2024-02-01

TOM RATTIN

#	Article	IF	CITATIONS
1	The boundless carbon cycle. Nature Geoscience, 2009, 2, 598-600.	12.9	1,223
2	Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 2008, 1, 95-100.	12.9	1,102
3	The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 2016, 14, 251-263.	28.6	746
4	Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 2003, 426, 439-442.	27.8	601
5	The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 2010, 8, 523-529.	28.6	562
6	Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9770-9778.	7.1	381
7	Microbial landscapes: new paths to biofilm research. Nature Reviews Microbiology, 2007, 5, 76-81.	28.6	288
8	Effects of Current Velocity on the Nascent Architecture of Stream Microbial Biofilms. Applied and Environmental Microbiology, 2003, 69, 5443-5452.	3.1	262
9	Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 2015, 8, 91-96.	12.9	262
10	Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience, 2012, 5, 710-714.	12.9	254
11	Nanostructured TiO ₂ : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 2009, 43, 8098-8104.	10.0	216
12	Fluvial network organization imprints on microbial co-occurrence networks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12799-12804.	7.1	193
13	Microbial biodiversity in glacier-fed streams. ISME Journal, 2013, 7, 1651-1660.	9.8	168
14	Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Scientific Reports, 2014, 4, 4981.	3.3	165
15	Phylogenetic and Functional Heterogeneity of Sediment Biofilms along Environmental Gradients in a Glacial Stream. Applied and Environmental Microbiology, 2001, 67, 799-807.	3.1	159
16	Ecohydrological interfaces as hot spots of ecosystem processes. Water Resources Research, 2017, 53, 6359-6376.	4.2	155
17	Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131760.	2.6	153
18	A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function*. Freshwater Biology, 2003, 48, 995-1014.	2.4	112

#	Article	IF	CITATIONS
19	Bacterial Community Composition of Stream Biofilms in Spatially Variable-Flow Environments. Applied and Environmental Microbiology, 2009, 75, 7189-7195.	3.1	106
20	Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnology and Oceanography, 2016, 61, 558-571.	3.1	106
21	Distinct air–water gas exchange regimes in low- and high-energy streams. Nature Geoscience, 2019, 12, 259-263.	12.9	102
22	Physical Heterogeneity Increases Biofilm Resource Use and Its Molecular Diversity in Stream Mesocosms. PLoS ONE, 2010, 5, e9988.	2.5	96
23	Scales and drivers of temporal <i>p</i> CO ₂ dynamics in an Alpine stream. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1078-1091.	3.0	87
24	Hydrodynamics is a major determinant of streambed biofilm activity: From the sediment to the reach scale. Limnology and Oceanography, 2000, 45, 1308-1319.	3.1	80
25	Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 2021, 14, 289-294.	12.9	76
26	Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains. Nature Communications, 2019, 10, 4888.	12.8	71
27	Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nature Communications, 2021, 12, 1730.	12.8	71
28	No evidence of aquatic priming effects in hyporheic zone microcosms. Scientific Reports, 2014, 4, 5187.	3.3	66
29	Scaling of dissolved organic carbon removal in river networks. Advances in Water Resources, 2017, 110, 136-146.	3.8	62
30	Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics. Nature Microbiology, 2016, 1, 16178.	13.3	60
31	CO ₂ evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO ₂ and gas transfer. Limnology and Oceanography, 2016, 61, 1826-1838.	3.1	57
32	Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an Alpine stream hyporheic zone. Water Resources Research, 1999, 35, 3159-3169.	4.2	54
33	Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences, 2004, 1, 159-171.	3.3	54
34	Hydrologic controls on basinâ€scale distribution of benthic invertebrates. Water Resources Research, 2014, 50, 2903-2920.	4.2	48
35	High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1806-1820.	3.0	48
36	Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. Global Change Biology, 2020, 26, 6644-6656.	9.5	46

#	Article	IF	CITATIONS
37	Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environmental Microbiology, 2015, 17, 5036-5047.	3.8	44
38	Architectural differentiation reflects bacterial community structure in stream biofilms. ISME Journal, 2009, 3, 1318-1324.	9.8	43
39	Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms. ISME Journal, 2015, 9, 2454-2464.	9.8	43
40	Hydrologic Variability Affects Invertebrate Grazing on Phototrophic Biofilms in Stream Microcosms. PLoS ONE, 2013, 8, e60629.	2.5	41
41	Ecological strategies and metabolic trade-offs of complex environmental biofilms. Npj Biofilms and Microbiomes, 2017, 3, 21.	6.4	40
42	Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. ISME Journal, 2019, 13, 1700-1710.	9.8	39
43	Functional and Structural Responses of Hyporheic Biofilms to Varying Sources of Dissolved Organic Matter. Applied and Environmental Microbiology, 2014, 80, 6004-6012.	3.1	38
44	Climate-Induced Changes in Spring Snowmelt Impact Ecosystem Metabolism and Carbon Fluxes in an Alpine Stream Network. Ecosystems, 2018, 21, 373-390.	3.4	38
45	Highâ€Resolution Spatial Sampling Identifies Groundwater as Driver of CO ₂ Dynamics in an Alpine Stream Network. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1961-1976.	3.0	37
46	Light availability impacts structure and function of phototrophic stream biofilms across domains and trophic levels. Molecular Ecology, 2018, 27, 2913-2925.	3.9	35
47	Effects of Streambed Morphology and Biofilm Growth on the Transient Storage of Solutes. Environmental Science & Technology, 2009, 43, 7337-7342.	10.0	32
48	Flow history explains temporal and spatial variation of carbon fractionation in stream periphyton. Limnology and Oceanography, 2005, 50, 706-712.	3.1	31
49	Benthic biofilm controls on fine particle dynamics in streams. Water Resources Research, 2017, 53, 222-236.	4.2	31
50	Microcosm design and evaluation to study stream microbial biofilms. Limnology and Oceanography: Methods, 2006, 4, 436-447.	2.0	29
51	Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments. Environmental Microbiology, 2014, 16, 802-812.	3.8	29
52	Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management. Wiley Interdisciplinary Reviews: Water, 2015, 2, 609-621.	6.5	29
53	Climateâ€induced hydrological variation controls the transformation of dissolved organic matter in a subalpine lake. Limnology and Oceanography, 2018, 63, 1355-1371.	3.1	29
54	Alpine Glacier Shrinkage Drives Shift in Dissolved Organic Carbon Export From Quasi hemostasis to Transport Limitation. Geophysical Research Letters, 2019, 46, 8872-8881.	4.0	29

#	Article	IF	CITATIONS
55	Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME Journal, 2022, 16, 666-675.	9.8	28
56	Ecosystem respiration increases with biofilm growth and bed forms: Flume measurements with resazurin. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2220-2230.	3.0	27
57	Experimental evidence reveals impact of drought periods on dissolved organic matter quality and ecosystem metabolism in subalpine streams. Limnology and Oceanography, 2019, 64, 46-60.	3.1	26
58	Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater. Aquatic Sciences, 2012, 74, 143-153.	1.5	25
59	Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications, 2022, 13, 2168.	12.8	25
60	Metabolism of mineralâ€ s orbed organic matter and microbial lifestyles in fluvial ecosystems. Geophysical Research Letters, 2016, 43, 1582-1588.	4.0	24
61	Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics. Limnology and Oceanography Letters, 2021, 6, 1-17.	3.9	23
62	Modeling the coupled dynamics of stream metabolism and microbial biomass. Limnology and Oceanography, 2020, 65, 1573-1593.	3.1	21
63	The microbiome of cryospheric ecosystems. Nature Communications, 2022, 13, .	12.8	20
64	Patterns and Drivers of Extracellular Enzyme Activity in New Zealand Glacier-Fed Streams. Frontiers in Microbiology, 2020, 11, 591465.	3.5	18
65	Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale. Journal of the Royal Society Interface, 2020, 17, 20200046.	3.4	18
66	Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ, 2020, 8, e9973.	2.0	18
67	Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms. PLoS ONE, 2011, 6, e26368.	2.5	17
68	Gravel bars are sites of increased CO2 outgassing in stream corridors. Scientific Reports, 2017, 7, 14401.	3.3	16
69	Regimes of primary production and their drivers in Alpine streams. Freshwater Biology, 2021, 66, 1449-1463.	2.4	15
70	Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nature Communications, 2022, 13, 950.	12.8	15
71	Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Global Change Biology, 2022, 28, 3846-3859.	9.5	15
72	The odonate mating system, communication, and sexual selection: A review. Bollettino Di Zoologia, 1993, 60, 353-360.	0.3	14

#	Article	IF	CITATIONS
73	A mass-spring model unveils the morphogenesis of phototrophic Diatoma biofilms. Scientific Reports, 2015, 4, 3649.	3.3	14
74	Environmental heterogeneity promotes spatial resilience of phototrophic biofilms in streambeds. Biology Letters, 2018, 14, 20180432.	2.3	14
75	The Metabolic Regimes at the Scale of an Entire Stream Network Unveiled Through Sensor Data and Machine Learning. Ecosystems, 2021, 24, 1792-1809.	3.4	14
76	Dynamics and potential drivers of CO ₂ concentration and evasion across temporal scales in high-alpine streams. Environmental Research Letters, 2019, 14, 124082.	5.2	13
77	Benthic Biofilms in Glacier-Fed Streams from Scandinavia to the Himalayas Host Distinct Bacterial Communities Compared with the Streamwater. Applied and Environmental Microbiology, 2022, 88, .	3.1	12
78	Morphogenesis and oxygen dynamics in phototrophic biofilms growing across a gradient of hydraulic conditions. IScience, 2021, 24, 102067.	4.1	11
79	Revision of the puella group of the genus Coenagrion Kirby, 1890 (Odonata, Zygoptera), with emphasis on morphologies contributing to reproductive isolation. Hydrobiologia, 1993, 262, 13-29.	2.0	10
80	Sources and variability of CO ₂ in a prealpine stream gravel bar. Hydrological Processes, 2019, 33, 2279-2299.	2.6	10
81	Benchmarking protocols for the metagenomic analysis of stream biofilm viromes. PeerJ, 2019, 7, e8187.	2.0	9
82	Hydrology controls the carbon mass balance of a mountain lake in the eastern European Alps. Limnology and Oceanography, 2021, 66, 2110-2125.	3.1	8
83	A New UV Oxidation Setup for Small Radiocarbon Samples in Solution. Radiocarbon, 2013, 55, 373-382.	1.8	7
84	Catchment land cover influences macroinvertebrate foodâ€web structure and energy flow pathways in mountain streams. Freshwater Biology, 2019, 64, 1557-1571.	2.4	7
85	Travel Time and Source Variation Explain the Molecular Transformation of Dissolved Organic Matter in an Alpine Stream Network. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005616.	3.0	7
86	Daily entropy of dissolved oxygen reveals different energetic regimes and drivers among highâ€mountain stream types. Limnology and Oceanography, 2021, 66, 1594-1610.	3.1	7
87	The Microbial Ecology of Benthic Environments. , 2015, , 4.2.1-1-4.2.1-20.		6
88	Sources, Transformation, and Fate of Dissolved Organic Matter in the Gravel Bar of a Prealpine Stream. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005604.	3.0	6
89	Biophysical properties at patch scale shape the metabolism of biofilm landscapes. Npj Biofilms and Microbiomes, 2022, 8, 5.	6.4	6
90	Light and hydrologic variability as drivers of stream biofilm dynamics in a flume experiment. Ecohydrology, 2014, 7, 391-400.	2.4	5

#	Article	IF	CITATIONS
91	Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater. Scientific Reports, 2016, 6, 30971.	3.3	4
92	Automated 3D Optical Coherence Tomography to Elucidate Biofilm Morphogenesis Over Large Spatial Scales. Journal of Visualized Experiments, 2019, , .	0.3	4
93	Microbial Ecology of Methanotrophy in Streams Along a Gradient of CH4 Availability. Frontiers in Microbiology, 2020, 11, 771.	3.5	4
94	Viral diversity is linked to bacterial community composition in alpine stream biofilms. ISME Communications, 2022, 2, .	4.2	4
95	A New UV Oxidation Setup for Small Radiocarbon Samples in Solution. Radiocarbon, 2013, 55, .	1.8	2