List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726691/publications.pdf Version: 2024-02-01

FENC HE

#	Article	IF	CITATIONS
1	Effect of acid treatment on surfaces of activated carbon supported catalysts for NO and SO ₂ removal. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 297-305.	2.1	7
2	Influences of Al2O3 content on crystallization and physical properties of LAS glass-ceramics prepared from spodumene. Journal of Non-Crystalline Solids, 2022, 576, 121256.	3.1	16
3	Excellent sulfur tolerance performance over Fe-SO4/TiO2 catalysts for NH3-SCR: Influence of sulfation and Fe-based sulfates. Journal of Environmental Chemical Engineering, 2022, 10, 107038.	6.7	26
4	Structure and sintering behavior of BaO–SrO–B2O3–SiO2 sealing glass for Al2O3 ceramic substrates. Ceramics International, 2022, 48, 27718-27730.	4.8	8
5	Insight into highly efficient FeOx catalysts for the selective catalytic reduction of NOx by NH3: Experimental and DFT study. Applied Surface Science, 2022, 599, 153998.	6.1	16
6	Cu, Co, or Ni species in exchanged Y zeolite catalysts and their denitration performance for selective catalytic reduction by ammonia. Applied Surface Science, 2022, 600, 154075.	6.1	5
7	Pyrolysis characteristics and mechanism of hydrocarbon compounds for RDF. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 13-20.	2.1	2
8	Effect of SiO2/BaO ratio on sintering behavior, crystallization behavior, and properties of SrO–BaO–B2O3–SiO2 glass-ceramics. Ceramics International, 2021, 47, 19043-19051.	4.8	15
9	Elucidate the promotional effects of Sn on Ce-Ti catalysts for NH3-SCR activity. Journal of the Energy Institute, 2020, 93, 1053-1063.	5.3	14
10	Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P. Applied Surface Science, 2020, 505, 144641.	6.1	44
11	Effects of fluoride content on structure and properties of steel slag glass-ceramics. Materials Chemistry and Physics, 2020, 242, 122531.	4.0	22
12	Structure, viscosity, and crystallization of glass melt from molten blast furnace slag. International Journal of Applied Glass Science, 2020, 11, 676-684.	2.0	13
13	Effect of BaO on the structure and properties of bismuth-based low-melting glasses. Advances in Applied Ceramics, 2020, 119, 439-447.	1.1	8
14	Calibration of Binding Energy Positions with C1s for XPS Results. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 711-718.	1.0	140
15	Structure, crystallization mechanism, and properties of glass ceramics from molten blast furnace slag with different B2O3/Al2O3. Materials Chemistry and Physics, 2020, 243, 122664.	4.0	19
16	Low Li2O content study in Li2O-Al2O3-SiO2 glass-ceramics. Journal of the European Ceramic Society, 2019, 39, 4988-4995.	5.7	55
17	Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Computational Materials Science, 2019, 160, 374-381.	3.0	36
18	Preparation and characterization of vitrified CeO2 coated cBN composites. Ceramics International, 2019, 45, 19704-19709.	4.8	5

#	Article	IF	CITATIONS
19	Exploring the influences of Li2O/SiO2 ratio on Li2O – Al2O3 – SiO2 – B2O3 – BaO glass-ceramic bonds for vitrified cBN abrasives. Ceramics International, 2019, 45, 15358-15365.	4.8	17
20	Effect of Al/Si ratio on the crystallization properties and structure of mold flux. Construction and Building Materials, 2019, 216, 19-28.	7.2	13
21	Effects of Al/Na and heat treatment on the structure and properties of glass ceramics from molten blast furnace slag. Ceramics International, 2019, 45, 13692-13700.	4.8	29
22	Novel heterogeneous denitrification catalyst over a wide temperature range: Synergy between CeO2, ZrO2 and TiO2. Chemical Engineering Journal, 2019, 356, 598-608.	12.7	35
23	Evaluating the Intermetallic Interaction of Fe or Cu Doped Mn/TiO2 Catalysts: SCR Activity and Sulfur Tolerance. Catalysis Letters, 2019, 149, 788-797.	2.6	18
24	Effect of heat treatments on the Li2O-Al2O3-SiO2-B2O3-BaO glass-ceramic bond and the glass-ceramic bond cBN grinding tools. International Journal of Refractory Metals and Hard Materials, 2019, 78, 201-209.	3.8	24
25	Characterization and performance of common alkali metals and alkaline earth metals loaded Mn/TiO2 catalysts for NOx removal with NH3. Journal of the Energy Institute, 2019, 92, 319-331.	5.3	26
26	Effect of Reaction Temperature on CeO2-Coated cBN Particles for Vitrified cBN Abrasive Tools. Springer Proceedings in Physics, 2019, , 9-16.	0.2	0
27	Kinetic analysis of crystallization in Li2O-Al2O3-SiO2-B2O3-BaO glass-ceramics. Journal of Non-Crystalline Solids, 2018, 491, 106-113.	3.1	18
28	Mn5O8 nanoflowers prepared via a solvothermal route as efficient denitration catalysts. Materials Chemistry and Physics, 2018, 209, 10-15.	4.0	16
29	Effects of Na 2 O/BaO ratio on the structure and the physical properties of low-temperature glass-ceramic vitrified bonds. Ceramics International, 2018, 44, 10871-10877.	4.8	32
30	Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Applied Surface Science, 2018, 427, 45-55.	6.1	56
31	The superior performance of hydrothermal method made CeZrTi catalyst for selective catalytic reduction of NO with NH ₃ . Materials Research Express, 2018, 5, 115514.	1.6	2
32	Crystallization mechanism and properties of glass ceramics from modified molten blast furnace slag. Journal of Non-Crystalline Solids, 2018, 502, 164-171.	3.1	51
33	Performance regulation of Mn/TiO2 catalysts by surfactants for the selective catalytic reduction of NO with NH3 at low temperatures. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 647-661.	1.7	6
34	The utilization of fly ash-MnO _x /FA catalysts for NO _x removal. Materials Research Express, 2018, 5, 065526.	1.6	5
35	Facile large-scale synthesis of Ce Mn composites by redox-precipitation and its superior low-temperature performance for NO removal. Powder Technology, 2018, 338, 774-782.	4.2	17
36	NH ₃ -SCR Performance and Applicability of Mn-Based Spinels over TiO ₂ Catalyst. Materials Science Forum, 2018, 921, 29-34.	0.3	2

#	Article	IF	CITATIONS
37	Effect of Calcination Temperature on the SCR Activity of Fe–S/TiO2 Catalysts. Springer Proceedings in Energy, 2018, , 929-935.	0.3	0
38	Study on novel and promising NH ₃ -SCR catalysts on glass fiber cloth for industrial applications. Materials Research Express, 2017, 4, 055503.	1.6	4
39	Preparation and characterization of CaO–Al2O3–SiO2 glass-ceramics from molybdenum tailings. Materials Chemistry and Physics, 2017, 197, 57-64.	4.0	43
40	Performance enhancement mechanism of Mn-based catalysts prepared under N 2 for NO x removal: Evidence of the poor crystallization and oxidation of MnO x. Chinese Journal of Catalysis, 2017, 38, 845-851.	14.0	31
41	Mechanistic study of Ce-modified MnO x /TiO2 catalysts with high NH3-SCR performance and SO2 resistance at low temperatures. Research on Chemical Intermediates, 2017, 43, 5413-5432.	2.7	28
42	Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures. Chinese Journal of Catalysis, 2017, 38, 1925-1934.	14.0	62
43	Influence of deposition pressure on properties of ZnO: Al films fabricated by RF magnetron sputtering. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1235-1239.	1.0	5
44	Effect of aluminum addition on microstructure and properties of SiO2-B2O3-Al2O3-CaO vitrified bond. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1267-1271.	1.0	5
45	Effect of WO3 on the structure and properties of low sintering temperature and high strength vitrified bonds. Journal of Alloys and Compounds, 2016, 679, 54-58.	5.5	17
46	Influence of Al2O3 on the structure and the physical properties of low-temperature ceramic vitrified bond. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 587-594.	5.6	18
47	Melting, sintering and wetting properties of ZnO–Bi2O3–B2O3 sealing glass. Journal of Central South University, 2016, 23, 1541-1547.	3.0	8
48	Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings. Construction and Building Materials, 2016, 111, 105-110.	7.2	67
49	Effect of glass colour agent on the heat transfer property of peritectic steel mould flux. Materials Research Innovations, 2015, 19, S8-665-S8-669.	2.3	0
50	Effect of cobalt oxides on heat transfer property of peritectic steel mould flux. Ironmaking and Steelmaking, 2015, 42, 126-131.	2.1	5
51	Effects of precursors and preparation methods on the potassium deactivation of MnO x /TiO 2 catalysts for NO removal. Fuel Processing Technology, 2015, 134, 465-472.	7.2	27
52	Structure and luminescent properties of Sm3+ doped SrO-MgO-SiO2 glass ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 282-287.	1.0	7
53	Identification of MnO species and Mn valence states in MnO /TiO2 catalysts for low temperature SCR. Chemical Engineering Journal, 2015, 271, 23-30.	12.7	154
54	Preparation and properties of sintered glass–ceramics containing Au–Cu tailing waste. Materials and Design, 2015, 86, 782-787.	7.0	24

#	Article	IF	CITATIONS
55	Characterization of low sintering temperature and high strength SiO2-B2O3-CaO vitrified bonds for diamond abrasive tools. Ceramics International, 2015, 41, 3449-3455.	4.8	30
56	Microstructure and mechanical properties of ceramics prepared under simulated oxygen-enriched or oxy-fuel atmosphere. Ceramics International, 2015, 41, 2779-2784.	4.8	1
57	Effect of CuMn2O4 spinel in Cu–Mn oxide catalysts on selective catalytic reduction of NOx with NH3 at low temperature. RSC Advances, 2014, 4, 25540.	3.6	90
58	Thermodynamic calculation for the activity and mechanism of Mn/TiO2 catalyst doped transition metals for SCR at low temperature. Catalysis Communications, 2014, 52, 45-48.	3.3	36
59	Influence of sodium on MnOx/TiO2 catalysts for SCR of NO with NH3 at low temperature. Materials Research Innovations, 2014, 18, S4-45-S4-49.	2.3	5
60	Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes. Science of Sintering, 2014, 46, 353-363.	1.4	8
61	IR and Raman Spectra Properties of Bi ₂ O ₃ -ZnO-B <su Quaternary Glass System. American Journal of Analytical Chemistry, 2014, 05, 1142-1150.</su 	ub&a mp ;gt;	2& am p;lt;/sd
62	Viscosity and Structure of Lithium Sodium Borosilicate Glasses. Physics Procedia, 2013, 48, 73-80.	1.2	16
63	Effects of atmospheres and precursors on MnO x /TiO2 catalysts for NH3-SCR at low temperature. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 888-892.	1.0	15
64	The effect of Bi2O3 on the structure and properties of float glass. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 898-901.	1.0	1
65	First principles and experimental study of NH3 adsorptions on MnOx surface. Applied Surface Science, 2013, 285, 215-219.	6.1	31
66	Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catalysis Communications, 2012, 28, 77-81.	3.3	82
67	Fabrication and characterization of glass–ceramics materials developed from steel slag waste. Materials & Design, 2012, 42, 198-203.	5.1	55
68	Study on sintered glass ceramics from Nb-Ta tailings. Glass Physics and Chemistry, 2012, 38, 109-115.	0.7	1
69	Effect of Bi2O3 on structure and wetting studies of Bi2O3–ZnO–B2O3 glasses. Journal of Alloys and Compounds, 2011, 509, 6332-6336.	5.5	88
70	Structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass. Central South University, 2010, 17, 257-262.	0.5	45
71	Preparation and microstructure of glass-ceramics and ceramic composite materials. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 562-565.	1.0	4
72	Effect of the cool system on internal stress of CaO-Al2O3-SiO2 glass-ceramic system. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 760-763.	1.0	0

#	Article	IF	CITATIONS
73	Influence of ZrO2 on sintering and crystallization of CaO-Al2O3-SiO2 glass-ceramics. Central South University, 2005, 12, 511-514.	0.5	4