Bala Subramaniam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/172666/publications.pdf

Version: 2024-02-01

213 papers

6,994 citations

45 h-index 90395 73
g-index

220 all docs

220 docs citations

times ranked

220

6286 citing authors

#	Article	IF	CITATIONS
1	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
2	Facile Production of 2,5â€Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	6
3	Guaiacol Hydrodeoxygenation and Hydrogenation over Bimetallic Pt-M (Nb, W, Zr)/KIT-6 Catalysts with Tunable Acidity. ACS Sustainable Chemistry and Engineering, 2022, 10, 4831-4838.	3.2	16
4	<i>ACS Sustainable Chemistry & Engineering </i> Welcomes Expanded Editorial Boards with New Initiatives. ACS Sustainable Chemistry and Engineering, 2021, 9, 1-2.	3.2	2
5	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering (i): An Initiative by the Editors. ACS Sustainable Chemistry and Engineering, 2021, 9, 3977-3978.</i>	3.2	16
6	ACS Sustainable Chemistry & Engineering Welcomes Manuscripts on Advanced E-Waste Recycling. ACS Sustainable Chemistry and Engineering, 2021, 9, 3624-3625.	3.2	2
7	Expectations for Manuscripts Contributing to the Field on Management of Synthetic Chemicals in <i>ACS Sustainable Chemistry & Engineering </i> 9, 3376-3378.	3.2	4
8	Lab to Market: Where the Rubber Meets the Road for Sustainable Chemical Technologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2987-2989.	3.2	3
9	Highly Selective Isobutane Hydroxylation by Ozone in a Pressure-Tuned Biphasic Gas–Liquid Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 5506-5512.	3.2	2
10	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering (i): Catalysis and Catalytic Processes. ACS Sustainable Chemistry and Engineering, 2021, 9, 4936-4940.</i>	3.2	34
11	The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chemistry and Engineering, 2021, 9, 8015-8017.	3.2	20
12	Solubility of Carbon Dioxide in Carboxylation Reaction Mixtures. Industrial & Engineering Chemistry Research, 2021, 60, 8375-8385.	1.8	1
13	Organic Electrosynthesis in CO ₂ -eXpanded Electrolytes: Enabling Selective Acetophenone Carboxylation to Atrolatic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 10431-10436.	3.2	11
14	Plastics Are Not Bad. Bad Plastics Are Bad ACS Sustainable Chemistry and Engineering, 2021, 9, 9150-9150.	3.2	3
15	Selective ozone activation of phenanthrene in liquid CO ₂ . RSC Advances, 2021, 12, 626-630.	1.7	1
16	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
17	Highly dispersed molybdenum containing mesoporous silicate (Mo-TUD-1) for olefin metathesis. Catalysis Today, 2020, 343, 215-225.	2.2	18
18	Kinetic modeling and mechanistic investigations of transesterification of propylene carbonate with methanol over an Fe–Mn double metal cyanide catalyst. Reaction Chemistry and Engineering, 2020, 5, 101-111.	1.9	7

#	Article	IF	CITATIONS
19	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
20	Butadiene hydroformylation to adipaldehyde with Rh-based catalysts: Insights into ligand effects. Molecular Catalysis, 2020, 484, 110721.	1.0	10
21	Expectations for Manuscripts Contributing to the Field of Solvents in <i>ACS Sustainable Chemistry & Engineering < /i> ACS Sustainable Chemistry and Engineering, 2020, 8, 14627-14629.</i>	3.2	23
22	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
23	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering < /i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.</i>	3.2	2
24	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	3.2	0
25	Lattice strained bimetallic PtPd nanocatalysts display multifunctional nature for transfer hydrogenolysis of sorbitol in base-free medium. Materials Today Sustainability, 2020, 10, 100047.	1.9	1
26	Constant Renewal: An Open Call for <i>ACS Sustainable Chemistry & Engineering (i) Editorial Advisory Board and Early Career Board Members. ACS Sustainable Chemistry and Engineering, 2020, 8, 12731-12732.</i>	3.2	1
27	Facile Prepolymer Formation with Ozone-Pretreated Grass Lignin by <i>In Situ</i> Grafting of Endogenous Aromatics. ACS Sustainable Chemistry and Engineering, 2020, 8, 17001-17007.	3.2	3
28	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	3.2	0
29	Expectations for Manuscripts with Nanoscience and Nanotechnology Elements in <i>ACS Sustainable Chemistry & Engineering </i> <ir> <ir> <ir> <ir> <ir> <ir> <ir> <i< td=""><td>3.2</td><td>5</td></i<></ir></ir></ir></ir></ir></ir></ir>	3.2	5
30	Experimental and computational investigations of C–H activation of cyclohexane by ozone in liquid CO2. Reaction Chemistry and Engineering, 2020, 5, 793-802.	1.9	7
31	Enhancing Molecular Electrocatalysis of CO ₂ Reduction with Pressureâ€Tunable CO ₂ â€Expanded Electrolytes. ChemSusChem, 2020, 13, 6338-6345.	3.6	8
32	Enriching Propane/Propylene Mixture by Selective Propylene Hydroformylation: Economic and Environmental Impact Analyses. ACS Sustainable Chemistry and Engineering, 2020, 8, 5140-5146.	3.2	2
33	Expectations for Papers on Photochemistry, Photoelectrochemistry, and Electrochemistry for Energy Conversion and Storage in <i>ACS Sustainable Chemistry & Engineering </i> Chemistry and Engineering, 2020, 8, 3038-3039.	3.2	4
34	Enhanced Friedel-Crafts benzylation activity of bimetallic WSn-KIT-6 catalysts. Journal of Catalysis, 2020, 389, 657-666.	3.1	4
35	Continuous Process for the Production of Taurine from Monoethanolamine. Industrial & Engineering Chemistry Research, 2020, 59, 13007-13015.	1.8	9
36	Expectations for Manuscripts on Industrial Ecology in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 9599-9600.	3.2	2

#	Article	IF	CITATIONS
37	Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 4096-4106.	3.2	25
38	Insights into pressure tunable reaction rates for electrochemical reduction of CO ₂ in organic electrolytes. Green Chemistry, 2020, 22, 2434-2442.	4.6	20
39	Enhanced Olefin Metathesis Performance of Tungsten and Niobium Incorporated Bimetallic Silicates: Evidence of Synergistic Effects. ChemCatChem, 2020, 12, 2004-2013.	1.8	9
40	Expectations for Manuscripts on Catalysis in <i>ACS Sustainable Chemistry & Engineering </i> ACS Sustainable Chemistry and Engineering, 2020, 8, 4995-4996.	3.2	14
41	Earth Day Reflections: Hope Amid the Pandemic. ACS Sustainable Chemistry and Engineering, 2020, 8, 5817-5818.	3.2	3
42	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering </i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	3.2	9
43	Rh-Catalyzed Hydroformylation of 1,3-Butadiene and Pent-4-enal to Adipaldehyde in CO ₂ -Expanded Media. Industrial & Engineering Chemistry Research, 2019, 58, 22526-22533.	1.8	4
44	110th Anniversary: Near-Total Epoxidation Selectivity and Hydrogen Peroxide Utilization with Nb-EISA Catalysts for Propylene Epoxidation. Industrial & Engineering Chemistry Research, 2019, 58, 17727-17735.	1.8	5
45	Liquid-Phase Oxidation of Ethylene Glycol on Pt and Pt–Fe Catalysts for the Production of Glycolic Acid: Remarkable Bimetallic Effect and Reaction Mechanism. Industrial & Description of Chemistry Research, 2019, 58, 18561-18568.	1.8	17
46	Reaction Engineering Studies of the Epoxidation of Fatty Acid Methyl Esters with Venturello Complex. Industrial & Engineering Chemistry Research, 2019, 58, 2514-2523.	1.8	12
47	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	3.3	32
48	Intensified Electrocatalytic CO ₂ Conversion in Pressureâ€Tunable CO ₂ â€Expanded Electrolytes. ChemSusChem, 2019, 12, 3761-3768.	3.6	19
49	Aqueous-Phase Glycerol Catalysis and Kinetics with in Situ Hydrogen Formation. ACS Sustainable Chemistry and Engineering, 2019, 7, 11323-11333.	3.2	14
50	Intensified ozonolysis of lignins in a spray reactor: insights into product yields and lignin structure. Reaction Chemistry and Engineering, 2019, 4, 1421-1430.	1.9	15
51	Understanding Sulfur Content in Alkylate from Sulfuric Acid-Catalyzed C ₃ /C ₄ Alkylations. Energy &	2.5	6
52	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	2.9	10
53	Transesterification of Propylene Carbonate with Methanol Using Fe–Mn Double Metal Cyanide Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 5698-5710.	3.2	31
54	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering </i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	3.2	5

#	Article	IF	CITATIONS
55	Dual Function Lewis Acid Catalyzed Depolymerization of Industrial Corn Stover Lignin into Stable Monomeric Phenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 1362-1371.	3.2	25
56	Genesis of Strong BrÃ,nsted Acid Sites in WZr-KIT-6 Catalysts and Enhancement of Ethanol Dehydration Activity. ACS Catalysis, 2018, 8, 4848-4859.	5.5	33
57	<i>ACS Sustainable Chemistry & Engineering (i) Virtual Special Issue on Promoting the Development and Use of Quantitative Sustainabilty Metrics. ACS Sustainable Chemistry and Engineering, 2018, 6, 4422-4422.</i>	3.2	5
58	Enhanced hydroformylation of 1-octene in n-butane expanded solvents with Co-based complexes. Reaction Chemistry and Engineering, 2018, 3, 344-352.	1.9	6
59	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering </i> ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	3.2	34
60	Homogeneous catalytic hydroformylation of propylene in propane-expanded solvent media. Chemical Engineering Science, 2018, 187, 148-156.	1.9	12
61	Remarkable epoxidation activity of neat and carbonized niobium silicates prepared by evaporation-induced self-assembly. Microporous and Mesoporous Materials, 2018, 261, 158-163.	2.2	13
62	Enhanced solubility of hydrogen and carbon monoxide in propane―and propyleneâ€expanded liquids. AICHE Journal, 2018, 64, 970-980.	1.8	7
63	Valorization of Grass Lignins: Swift and Selective Recovery of Pendant Aromatic Groups with Ozone. ACS Sustainable Chemistry and Engineering, 2018, 6, 71-76.	3.2	30
64	Oxidation of Glucose Using Mono- and Bimetallic Catalysts under Base-Free Conditions. Organic Process Research and Development, 2018, 22, 1653-1662.	1.3	21
65	Correlation of Active Site Precursors and Olefin Metathesis Activity in W-Incorporated Silicates. ACS Catalysis, 2018, 8, 10437-10445.	5.5	13
66	Kinetic Study of CaO-Catalyzed Transesterification of Cyclic Carbonates with Methanol. Industrial & Lamp; Engineering Chemistry Research, 2018, 57, 14977-14987.	1.8	16
67	Metal-Incorporated Mesoporous Silicates: Tunable Catalytic Properties and Applications. Molecules, 2018, 23, 263.	1.7	16
68	Strategies to Passivate BrÃ, nsted Acidity in Nb-TUD-1 Enhance Hydrogen Peroxide Utilization and Reduce Metal Leaching during Ethylene Epoxidation. Industrial & Engineering Chemistry Research, 2017, 56, 1999-2007.	1.8	14
69	Effects of tunable acidity and basicity of Nbâ€KITâ€6 catalysts on ethanol conversion: Experiments and kinetic modeling. AICHE Journal, 2017, 63, 2888-2899.	1.8	13
70	Intensified and safe ozonolysis of fatty acid methyl esters in liquid CO ₂ in a continuous reactor. AICHE Journal, 2017, 63, 2819-2826.	1.8	13
71	Thermal Cracking and Catalytic Hydrocracking of a Colombian Vacuum Residue and Its Maltenes and Asphaltenes Fractions in Toluene. Energy & Samp; Fuels, 2017, 31, 3868-3877.	2.5	31
72	Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General, 2017, 534, 46-57.	2.2	24

#	Article	IF	Citations
73	Developing Students' Understanding of Industrially Relevant Economic and Life Cycle Assessments. Journal of Chemical Education, 2017, 94, 1798-1801.	1.1	11
74	Synthesis of molybdenum-incorporated mesoporous silicates by evaporation-induced self-assembly: Insights into surface oxide species and corresponding olefin metathesis activity. Microporous and Mesoporous Materials, 2017, 245, 118-125.	2.2	17
75	Kinetic modeling of carboxylation of propylene oxide to propylene carbonate using ion-exchange resin catalyst in a semi-batch slurry reactor. Chemical Engineering Science, 2017, 168, 189-203.	1.9	16
76	Intriguing Catalyst (CaO) Pretreatment Effects and Mechanistic Insights during Propylene Carbonate Transesterification with Methanol. ACS Sustainable Chemistry and Engineering, 2017, 5, 4718-4729.	3.2	31
77	Advances in Catalysis for Sustainable Development Special Issue. ACS Sustainable Chemistry and Engineering, 2017, 5, 3597-3597.	3.2	4
78	Novel tungsten-incorporated mesoporous silicates synthesized via evaporation-induced self-assembly: Enhanced metathesis performance. Journal of Catalysis, 2017, 350, 182-188.	3.1	13
79	<i>ACS Sustainable Chemistry & Sustainable Chemistry & Sustainable Chemistry and Engineering, 2017, 5, 5617-5617.</i>	3.2	0
80	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	3.2	8
81	Phase Transformed PtFe Nanocomposites Show Enhanced Catalytic Performances in Oxidation of Glycerol to Tartronic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 13157-13164.	1.8	24
82	Zirconium-Incorporated Mesoporous Silicates Show Remarkable Lignin Depolymerization Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 7155-7164.	3.2	38
83	Kinetics of homogeneous 5â€hydroxymethylfurfural oxidation to 2,5â€furandicarboxylic acid with Co/Mn/Br catalyst. AICHE Journal, 2017, 63, 162-171.	1.8	39
84	LCA for Green Chemical Synthesis—Terephthalic Acid. , 2017, , 387-396.		0
85	Sustainable Processes With Supercritical Fluids. , 2017, , 653-662.		1
86	Chemical Process Intensification with Pressure-Tunable Media. Theoretical Foundations of Chemical Engineering, 2017, 51, 928-935.	0.2	2
87	Development of a Sustainable and Economically Viable Process for Making Ethylene Oxide: A Case Study., 2017,, 373-385.		1
88	Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with <i>in situ</i> formed hydrogen. AICHE Journal, 2016, 62, 1162-1173.	1.8	23
89	Optimization of Co/Mn/Br-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Enhance 2,5-Furandicarboxylic Acid Yield and Minimize Substrate Burning. ACS Sustainable Chemistry and Engineering, 2016, 4, 3659-3668.	3.2	80
90	Anisotropic growth of PtFe nanoclusters induced by lattice-mismatch: Efficient catalysts for oxidation of biopolyols to carboxylic acid derivatives. Journal of Catalysis, 2016, 337, 272-283.	3.1	43

#	Article	IF	CITATIONS
91	Enhanced metathesis of ethylene and 2-butene on tungsten incorporated ordered mesoporous silicates. Applied Catalysis A: General, 2016, 528, 142-149.	2.2	19
92	Quantitative Sustainability Analysis: A Powerful Tool to Develop Resource-Efficient Catalytic Technologies. ACS Sustainable Chemistry and Engineering, 2016, 4, 5859-5865.	3.2	24
93	Kinetic Modeling of Sorbitol Hydrogenolysis over Bimetallic RuRe/C Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6037-6047.	3.2	24
94	Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts. ACS Catalysis, 2016, 6, 4576-4583.	5.5	68
95	Mixed alcohol dehydration over $Br ilde{A}_{,n}$ nsted and Lewis acidic catalysts. Applied Catalysis A: General, 2016, 510, 110-124.	2.2	59
96	Mechanistic insights for enhancing activity and stability of Nb-incorporated silicates for selective ethylene epoxidation. Journal of Catalysis, 2016, 336, 75-84.	3.1	44
97	Synergistic Effects of Bimetallic PtPd/TiO ₂ Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Industrial & Dependent Activity and Selectivity. Industrial & Dependent Activity Research, 2016, 55, 2932-2945.	1.8	73
98	Evaporation-induced self-assembly of mesoporous zirconium silicates with tunable acidity and facile catalytic dehydration activity. Microporous and Mesoporous Materials, 2016, 223, 46-52.	2.2	14
99	Unique characteristics of MnOx-incorporated mesoporous silicate, Mn-FDU-5, prepared via evaporation induced self assembly. Journal of Porous Materials, 2016, 23, 57-65.	1.3	7
100	Potential applications of Zr-KIT-5: Hantzsch reaction, Meerwein–Ponndorf–Verley (MPV) reduction of 4-tert-butylcyclohexanone, and Prins reaction of citronellal. Research on Chemical Intermediates, 2016, 42, 2399-2408.	1.3	7
101	Advancing the Use of Sustainability Metrics. ACS Sustainable Chemistry and Engineering, 2015, 3, 2359-2360.	3.2	22
102	Comparative Study of Nb-Incorporated Cubic Mesoporous Silicates as Epoxidation Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 4236-4242.	1.8	26
103	Facile Styrene Epoxidation with H2O2 over Novel Niobium Containing Cage Type Mesoporous Silicate, Nb-KIT-5. Topics in Catalysis, 2015, 58, 314-324.	1.3	20
104	Importance of Long-Range Noncovalent Interactions in the Regioselectivity of Rhodium-Xantphos-Catalyzed Hydroformylation. Organometallics, 2015, 34, 1062-1073.	1.1	23
105	Sorbitol Hydrogenolysis over Hybrid Cu/CaO-Al ₂ O ₃ Catalysts: Tunable Activity and Selectivity with Solid Base Incorporation. ACS Catalysis, 2015, 5, 6545-6558.	5. 5	76
106	Continuous Hydroformylation with Phosphine-Functionalized Polydimethylsiloxane Rhodium Complexes as Nanofilterable Homogeneous Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 10656-10660.	1.8	9
107	Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. Journal of Catalysis, 2015, 330, 323-329.	3.1	88
108	Liquid CO ₂ as a Safe and Benign Solvent for the Ozonolysis of Fatty Acid Methyl Esters. ACS Sustainable Chemistry and Engineering, 2015, 3, 3307-3314.	3.2	36

#	Article	IF	Citations
109	Novel zirconium containing cage type silicate (Zr-KIT-5): An efficient Friedel–Crafts alkylation catalyst. Chemical Engineering Journal, 2015, 278, 113-121.	6.6	40
110	Perspectives on exploiting near-critical fluids for energy-efficient catalytic conversion of emerging feedstocks. Journal of Supercritical Fluids, 2015, 96, 96-102.	1.6	7
111	Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. Journal of Catalysis, 2014, 309, 174-184.	3.1	91
112	Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chemical Engineering Science, 2014, 115, 3-18.	1.9	40
113	Environmental impacts of ethylene production from diverse feedstocks and energy sources. Applied Petrochemical Research, 2014, 4, 167-179.	1.3	89
114	Niobium incorporated mesoporous silicate, Nb-KIT-6: Synthesis and characterization. Microporous and Mesoporous Materials, 2014, 190, 240-247.	2.2	66
115	Development of a Greener Hydroformylation Process Guided by Quantitative Sustainability Assessments. ACS Sustainable Chemistry and Engineering, 2014, 2, 2748-2757.	3.2	18
116	Synthesis, Characterization, and Epoxidation Activity of Tungsten-Incorporated SBA-16 (W-SBA-16). Industrial & Description of the SBA-16 (W-SBA-16).	1.8	49
117	Kinetic Investigations ofp-Xylene Oxidation to Terephthalic Acid with a Co/Mn/Br Catalyst in a Homogeneous Liquid Phase. Industrial & Engineering Chemistry Research, 2014, 53, 9017-9026.	1.8	17
118	Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6). Catalysis Science and Technology, 2014, 4, 4433-4439.	2.1	52
119	Terephthalic Acid Production via Greener Spray Process: Comparative Economic and Environmental Impact Assessments with Mid-Century Process. ACS Sustainable Chemistry and Engineering, 2014, 2, 823-835.	3.2	24
120	Intrinsic Kinetics of Ethanol Dehydration Over Lewis Acidic Ordered Mesoporous Silicate, Zr-KIT-6. Topics in Catalysis, 2014, 57, 1407-1411.	1.3	16
121	Graphene oxide stabilized Cu2O for shape selective nanocatalysis. Journal of Materials Chemistry A, 2014, 2, 7147.	5.2	28
122	Highly selective homogeneous ethylene epoxidation in gas (ethylene)â€expanded liquid: Transport and kinetic studies. AICHE Journal, 2013, 59, 180-187.	1.8	34
123	Is the Liquid-Phase H ₂ O ₂ -Based Ethylene Oxide Process More Economical and Greener Than the Gas-Phase O ₂ -Based Silver-Catalyzed Process?. Industrial & Engineering Chemistry Research, 2013, 52, 18-29.	1.8	53
124	Synthesis and Dehydration Activity of Novel Lewis Acidic Ordered Mesoporous Silicate: Zr-KIT-6. Industrial & Engineering Chemistry Research, 2013, 52, 15481-15487.	1.8	60
125	Vapor-phase methanol and ethanol coupling reactions on CuMgAl mixed metal oxides. Applied Catalysis A: General, 2013, 455, 234-246.	2.2	51
126	A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid. Chemical Engineering Science, 2013, 104, 93-102.	1.9	42

#	Article	IF	CITATIONS
127	Tungsten-incorporated cage-type mesoporous silicate: W-KIT-5. Microporous and Mesoporous Materials, 2013, 175, 43-49.	2.2	52
128	Lattice-Matched Bimetallic CuPd-Graphene Nanocatalysts for Facile Conversion of Biomass-Derived Polyols to Chemicals. ACS Nano, 2013, 7, 1309-1316.	7.3	112
129	Rapid Room Temperature Synthesis of Ce–MCM-48: An Active Catalyst for trans-Stilbene Epoxidation with tert-Butyl Hydroperoxide. ACS Symposium Series, 2013, , 213-228.	0.5	1
130	Multiphase Catalytic Hydrogenolysis/Hydrodeoxygenation Processes for Chemicals from Renewable Feedstocks: Kinetics, Mechanism, and Reaction Engineering. Industrial & Engineering Chemistry Research, 2013, 52, 15226-15243.	1.8	35
131	Enhanced hydroformylation by carbon dioxideâ€expanded media with soluble Rh complexes in nanofiltration membrane reactors. AICHE Journal, 2013, 59, 4287-4296.	1.8	23
132	Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6. Microporous and Mesoporous Materials, 2013, 167, 207-212.	2.2	61
133	Aqueous Phase Hydrogenation of Acetic Acid and Its Promotional Effect on <i>p</i> -Cresol Hydrodeoxygenation. Energy & En	2.5	76
134	Atom Economical Aqueous-Phase Conversion (APC) of Biopolyols to Lactic Acid, Glycols, and Linear Alcohols Using Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2013, 1, 1453-1462.	3.2	59
135	Comparative Economic and Environmental Assessments of H ₂ O ₂ -based and Tertiary Butyl Hydroperoxide-based Propylene Oxide Technologies. ACS Sustainable Chemistry and Engineering, 2013, 1, 268-277.	3.2	49
136	Gas Expanded Liquids for Sustainable Catalysis. , 2013, , 5-36.		2
137	Direct incorporation of tungsten into ultra-large-pore three-dimensional mesoporous silicate framework: W-KIT-6. Journal of Porous Materials, 2012, 19, 961-968.	1.3	50
138	Sustainable catalytic reaction engineering with gas-expanded liquids. Current Opinion in Chemical Engineering, 2012, 1, 336-341.	3.8	13
139	Ultraviolet–Visible Spectroscopy and Temperature-Programmed Techniques as Tools for Structural Characterization of Cu in CuMgAlOxMixed Metal Oxides. Journal of Physical Chemistry C, 2012, 116, 18207-18221.	1.5	43
140	Catalytic Hydroprocessing of p-Cresol: Metal, Solvent and Mass-Transfer Effects. Topics in Catalysis, 2012, 55, 129-139.	1.3	109
141	A fluidized-bed coating technology using near-critical carbon dioxide as fluidizing and drying medium. Journal of Supercritical Fluids, 2012, 66, 315-320.	1.6	10
142	Prediction of multicomponent phase behavior of CO2-expanded liquids using CEoS/GE models and comparison with experimental data. Journal of Supercritical Fluids, 2012, 67, 41-52.	1.6	13
143	Gas Expanded Liquids for Sustainable Catalysis. , 2012, , 199-221.		0
144	Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid. ACS Catalysis, 2011, 1, 548-551.	5. 5	147

#	Article	IF	CITATIONS
145	Continuous homogeneous hydroformylation with bulky rhodium catalyst complexes retained by nano-filtration membranes. Applied Catalysis A: General, 2011, 393, 294-301.	2.2	47
146	Tapered element oscillating microbalance (TEOM) studies of isobutane, nâ€butane and propane sorption in β―and Yâ€zeolites. AICHE Journal, 2010, 56, 1285-1296.	1.8	1
147	Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: multiple benefits of CO2-expanded liquids. Green Chemistry, 2010, 12, 260.	4.6	46
148	Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition. Catalysis Today, 2010, 156, 31-37.	2.2	157
149	Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances. Coordination Chemistry Reviews, 2010, 254, 1843-1853.	9.5	72
150	Toward a CO2-free ethylene oxide process: Homogeneous ethylene oxide in gas-expanded liquids. Chemical Engineering Science, 2010, 65, 128-134.	1.9	38
151	Exploiting Neoteric Solvents for Sustainable Catalysis and Reaction Engineering: Opportunities and Challenges. Industrial & Engineering Chemistry Research, 2010, 49, 10218-10229.	1.8	25
152	Supercritical Deoxygenation of a Model Bio-Oil Oxygenate. Industrial & Engineering Chemistry Research, 2010, 49, 10852-10858.	1.8	10
153	Kinetic Modeling of Aqueous-Phase Glycerol Hydrogenolysis in a Batch Slurry Reactor. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 10826-10835.	1.8	66
154	Green Methods for Processing and Utilizing Metal Complexes. ACS Symposium Series, 2009, , 274-289.	0.5	1
155	Gas-Expanded Liquids: Fundamentals and Applications. ACS Symposium Series, 2009, , 3-37.	0.5	38
156	Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures. Journal of Catalysis, 2009, 268, 243-250.	3.1	107
157	Nearâ€stoichiometric O ₂ binding on metal centers in Co(salen) nanoparticles. AICHE Journal, 2009, 55, 1040-1045.	1.8	7
158	Solubilities of CO and H ₂ in Neat and CO ₂ -Expanded Hydroformylation Reaction Mixtures Containing 1-Octene and Nonanal up to 353.15 K and 9 MPa. Journal of Chemical & Lournal States (2009), 54, 1633-1642.	1.0	28
159	Isobutane/butenealkylation on microporous and mesoporous solid acid catalysts: probing the pore transport effects with liquid and near critical reaction media. Green Chemistry, 2009, 11, 102-108.	4.6	26
160	Adsorption/Desorption Studies of 224-Trimethylpentane in \hat{l}^2 -Zeolite and Mesoporous Materials Using a Tapered Element Oscillating Microbalance (TEOM). Industrial & Engineering Chemistry Research, 2009, 48, 9490-9497.	1.8	6
161	Hydroformylation in CO ₂ -Expanded Media. ACS Symposium Series, 2009, , 202-217.	0.5	4
162	Catalytic Oxidation Reactions in Carbon Dioxide-Expanded Liquids Using the Green Oxidants Oxygen and Hydrogen Peroxide. ACS Symposium Series, 2009, , 145-190.	0.5	0

#	Article	IF	CITATIONS
163	The Catalytic Efficacy of Co(salen)(AL) in O2 Oxidation Reactions in CO2-Expanded Solvent Media: Axial Ligand Dependence and Substrate Selectivity. Catalysis Letters, 2008, 123, 46-50.	1.4	10
164	Economic and Environmental Impact Analyses of Solid Acid Catalyzed Isoparaffin/Olefin Alkylation in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2008, 47, 9072-9080.	1.8	14
165	Liquid-Phase Oxidation of Toluene andp-toluic Acid under Mild Conditions:Â Synergistic Effects of Cobalt, Zirconium, Ketones, and Carbon Dioxide. Industrial & Engineering Chemistry Research, 2008, 47, 546-552.	1.8	21
166	Nitric Oxide Disproportionation at Mild Temperatures by a Nanoparticulate Cobalt(II) Complex. Chemistry of Materials, 2008, 20, 5939-5941.	3.2	8
167	Arvind Varma: Educator, Researcher and Leader. Industrial & Engineering Chemistry Research, 2008, 47, 8957-8959.	1.8	0
168	Correlation between Active Center Structure and Enhanced Dioxygen Binding in Co(salen) Nanoparticles: Characterization by In Situ Infrared, Raman, and X-ray Absorption Spectroscopies. Journal of Physical Chemistry C, 2008, 112, 12272-12281.	1.5	17
169	Economic and Environmental Impact Analyses of Catalytic Olefin Hydroformylation in CO ₂ -Expanded Liquid (CXL) Media. Industrial & Engineering Chemistry Research, 2007, 46, 8687-8692.	1.8	36
170	Prediction of phase equilibria and transport properties in carbon-dioxide expanded solvents by molecular simulation. Molecular Simulation, 2007, 33, 861-869.	0.9	25
171	Particle Fluidization with Supercritical Carbon Dioxide:Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Supercritical Carbon Dioxide: Â Experiments and Theory. Industrial & Description of the Particle Fluidization with Particle Fluidizatio	1.8	16
	Engineering Chemistry Research, 2007, 46, 3153-3156.		
172	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694.	23.0	521
		23.0	521
172	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent:		
172 173	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: Modeling and experiments. Chemical Engineering Science, 2007, 62, 4967-4975. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions.	1.9	18
172 173 174	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: Modeling and experiments. Chemical Engineering Science, 2007, 62, 4967-4975. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chemical Engineering Science, 2007, 62, 5062-5069. Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: Reaction	1.9	18
172 173 174	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: Modeling and experiments. Chemical Engineering Science, 2007, 62, 4967-4975. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chemical Engineering Science, 2007, 62, 5062-5069. Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: Reaction media effects on catalyst deactivation. Journal of Catalysis, 2007, 245, 184-190. A greener, pressure intensified propylene epoxidation process with facile product separation.	1.9 1.9 3.1	18 67 35
172 173 174 175	Cas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: Modeling and experiments. Chemical Engineering Science, 2007, 62, 4967-4975. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chemical Engineering Science, 2007, 62, 5062-5069. Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: Reaction media effects on catalyst deactivation. Journal of Catalysis, 2007, 245, 184-190. A greener, pressure intensified propylene epoxidation process with facile product separation. Chemical Engineering Science, 2007, 62, 7282-7289. Phase Equilibria in Carbon Dioxide Expanded Solvents:Â Experiments and Molecular Simulations.	1.9 1.9 3.1 1.9	18 67 35 36
172 173 174 175 176	Gas-Expanded Liquids. Chemical Reviews, 2007, 107, 2666-2694. Mass transfer effects during homogeneous 1-octene hydroformylation in CO2-expanded solvent: Modeling and experiments. Chemical Engineering Science, 2007, 62, 4967-4975. In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions. Chemical Engineering Science, 2007, 62, 5062-5069. Continuous acylation of anisole by acetic anhydride in mesoporous solid acid catalysts: Reaction media effects on catalyst deactivation. Journal of Catalysis, 2007, 245, 184-190. A greener, pressure intensified propylene epoxidation process with facile product separation. Chemical Engineering Science, 2007, 62, 7282-7289. Phase Equilibria in Carbon Dioxide Expanded Solvents:Â Experiments and Molecular Simulations. Journal of Physical Chemistry B, 2006, 110, 13195-13202. Immobilized metal complexes in porous hosts: catalytic oxidation of substituted phenols in CO2 media.	1.9 1.9 3.1 1.9	18 67 35 36 56

#	Article	IF	Citations
181	Nanoparticulate Metal Complexes Prepared with Compressed Carbon Dioxide:  Correlation of Particle Morphology with Precursor Structure. Journal of the American Chemical Society, 2005, 127, 9698-9699.	6.6	33
182	Dense Gas Antisolvent Precipitation:Â A Comparative Investigation of the GAS and PCA Techniques. Industrial & Dense Gas Antisolvent Precipitation:Â A Comparative Investigation of the GAS and PCA Techniques. Industrial & Dense Gas Antisolvent Precipitation:Â A Comparative Investigation of the GAS and PCA Techniques.	1.8	31
183	Application of CO2-expanded solvents in heterogeneous catalysis: a case study. Applied Catalysis B: Environmental, 2004, 49, 91-98.	10.8	57
184	Homogeneous catalytic hydroformylation of 1-octene in CO2-expanded solvent media. Chemical Engineering Science, 2004, 59, 4887-4893.	1.9	63
185	Autoxidation of 2,6-di-tert-butylphenol with cobalt Schiff base catalysts by oxygen in CO2-expanded liquids. Green Chemistry, 2004, 6, 387.	4.6	38
186	Homogeneous Catalytic Epoxidation of Organic Substrates in CO2-Expanded Solvents in the Presence of Water-Soluble Oxidants and Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 6505-6510.	1.8	36
187	Exothermic oxidations in supercritical CO2: effects of pressure-tunable heat capacity on adiabatic temperature rise and parametric sensitivity. Chemical Engineering Science, 2003, 58, 1897-1901.	1.9	16
188	Vaporâ^'Liquid Mass Transfer during Gas Antisolvent Recrystallization:Â Modeling and Experiments. Industrial & Engineering Chemistry Research, 2003, 42, 2171-2182.	1.8	26
189	Pressure-Tuning the Effective Diffusivity of Near-critical Reaction Mixtures in Mesoporous Catalysts. Industrial & Diffusivity Research, 2003, 42, 2639-2643.	1.8	23
190	Continuous Heterogeneous Catalytic Hydrogenation of Organic Compounds in Supercritical CO2. Chemical Industries, 2002, , .	0.1	1
191	CO2-Expanded Solvents:Â Unique and Versatile Media for Performing Homogeneous Catalytic Oxidations. Journal of the American Chemical Society, 2002, 124, 2513-2517.	6.6	180
192	Environmentally benign multiphase catalysis with dense phase carbon dioxide. Applied Catalysis B: Environmental, 2002, 37, 279-292.	10.8	100
193	Autoxidation of Substituted Phenols Catalyzed by Cobalt Schiff Base Complexes in Supercritical Carbon Dioxide. Inorganic Chemistry, 2001, 40, 3336-3341.	1.9	78
194	Enhanced Isooctane Yields for 1-Butene/Isobutane Alkylation on SiO2-supported Nafion®®® Nafion is a registered trademark of I.E. du Pont de Nemours & Surface Science and Catalysis, 2001, 139, 221-228.	1.5	15
195	Enhancing the stability of porous catalysts with supercritical reaction media. Applied Catalysis A: General, 2001, 212, 199-213.	2.2	94
196	Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coordination Chemistry Reviews, 2001, 219-221, 789-820.	9.5	162
197	Fixed-bed hydrogenation of organic compounds in supercritical carbon dioxide. Chemical Engineering Science, 2001, 56, 1363-1369.	1.9	57
198	Green Process Concepts for the Pharmaceutical Industry. ACS Symposium Series, 2000, , 96-110.	0.5	6

#	Article	IF	CITATIONS
199	Kinetics on a supported catalyst at supercritical, nondeactivating conditions. AICHE Journal, 1999, 45, 1559-1565.	1.8	27
200	Extended Alkylate Production Activity during Fixed-Bed Supercritical 1-Butene/Isobutane Alkylation on Solid Acid Catalysts Using Carbon Dioxide as a Diluent. Industrial & Digineering Chemistry Research, 1998, 37, 1243-1250.	1.8	93
201	Fischer-tropsch synthesis in near-criticaln-hexane: Pressure-tuning effects. AICHE Journal, 1998, 44, 1889-1896.	1.8	52
202	On-Line Gas Chromatographic Analysis of Fischerâ^'Tropsch Synthesis Products Formed in a Supercritical Reaction Medium. Industrial & Engineering Chemistry Research, 1997, 36, 4413-4420.	1.8	25
203	Pharmaceutical Processing with Supercritical Carbon Dioxide. Journal of Pharmaceutical Sciences, 1997, 86, 885-890.	1.6	378
204	Energy trapping during reverse flow operation with discrete power introduction: Experiments and theory. Canadian Journal of Chemical Engineering, 1996, 74, 743-750.	0.9	2
205	1-hexene isomerization on a Pt/\hat{I}^3 -Al2O3 catalyst: The dramatic effects of feed peroxides on catalyst activity. Chemical Engineering Science, 1996, 51, 2369-2377.	1.9	32
206	Continous-mixture kinetics of coke formation from olefinic oligomers. AICHE Journal, 1995, 41, 317-323.	1.8	19
207	In Situ Mitigation of Coke Buildup in Porous Catalysts with Supercritical Reaction Media. ACS Symposium Series, 1995, , 246-256.	0.5	4
208	A PHYSICOCHEMICAL BASIS FOR FILM NONUNIFORMITIES IN SELECTIVE EPITAXIAL GROWTH. Chemical Engineering Communications, 1995, 140, 131-138.	1.5	0
209	PREDICTION OF CRITICAL PROPERTIES OF 1-HEXENE/HEXENE ISOMERS/CARBON DIOXIDE MIXTURES WITH A CUBIC EOS: SENSITIVITY TO MIXTURE COMPOSITION AND TO THE PATH OF APPROACH TO CRITICAL POINTS. Chemical Engineering Communications, 1993, 125, 121-137.	1.5	1
210	Coking and activity of porous catalysts in supercritical reaction media. AICHE Journal, 1992, 38, 1027-1037.	1.8	50
211	Phase and Reaction Equilibria Considerations in the Evaluation and Operation of Supercritical Fluid Reaction Processes. ACS Symposium Series, 1989, , 301-316.	0.5	4
212	Reactions in supercritical fluids - a review. Industrial & Engineering Chemistry Process Design and Development, 1986, 25, 1-12.	0.6	212
213	Global Recognition for Green and Sustainable Chemistry and Engineering. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1