## Hans Michael Haitchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726453/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Validation and further insight into the International Severe Asthma Registry (ISAR) eosinophil<br>gradient algorithm in the Wessex AsThma CoHort of difficult asthma (WATCH) using historical blood<br>eosinophil counts and induced sputum. Clinical and Experimental Allergy, 2022, 52, 792-796. | 1.4 | 5         |
| 2  | The effect of the COVID-19 pandemic on severe asthma care in Europe - will care change for good?. ERJ<br>Open Research, 2022, 8, 00065-2022.                                                                                                                                                       | 1.1 | 3         |
| 3  | The Detrimental Clinical Associations of Anxiety and Depression with Difficult Asthma Outcomes.<br>Journal of Personalized Medicine, 2022, 12, 686.                                                                                                                                                | 1.1 | 4         |
| 4  | Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding.<br>European Respiratory Journal, 2022, 60, 2200455.                                                                                                                                            | 3.1 | 6         |
| 5  | Clinical evaluation of type 2 disease status in a realâ€world population of difficult to manage asthma<br>using historic electronic healthcare records of blood eosinophil counts. Clinical and Experimental<br>Allergy, 2021, 51, 811-820.                                                        | 1.4 | 27        |
| 6  | Asthma did not increase inâ€hospital COVIDâ€19â€related mortality in a tertiary UK hospital. Clinical and<br>Experimental Allergy, 2021, 51, 939-941.                                                                                                                                              | 1.4 | 10        |
| 7  | The Clinical Implications of Aspergillus Fumigatus Sensitization in Difficult-To-Treat Asthma Patients.<br>Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4254-4267.e10.                                                                                                        | 2.0 | 21        |
| 8  | New Perspectives on Difficult Asthma; Sex and Age of Asthma-Onset Based Phenotypes. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3396-3406.e4.                                                                                                                                | 2.0 | 28        |
| 9  | Patient perceived barriers to exercise and their clinical associations in difficult asthma. Asthma<br>Research and Practice, 2020, 6, 5.                                                                                                                                                           | 1.2 | 13        |
| 10 | Involvement of the epidermal growth factor receptor in ILâ€13–mediated corticosteroidâ€resistant airway inflammation. Clinical and Experimental Allergy, 2020, 50, 672-686.                                                                                                                        | 1.4 | 9         |
| 11 | Protocol for the Wessex AsThma CoHort of difficult asthma (WATCH): a pragmatic real-life<br>longitudinal study of difficult asthma in the clinic. BMC Pulmonary Medicine, 2019, 19, 99.                                                                                                            | 0.8 | 22        |
| 12 | Regulation of ectodomain shedding of ADAM33 inÂvitro and inÂvivo. Journal of Allergy and Clinical<br>Immunology, 2019, 143, 2281-2284.e3.                                                                                                                                                          | 1.5 | 1         |
| 13 | Increased Expression of p22phox Mediates Airway Hyperresponsiveness in an Experimental Model of Asthma. Antioxidants and Redox Signaling, 2017, 27, 1460-1472.                                                                                                                                     | 2.5 | 12        |
| 14 | Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated<br>Metalloprotease with Nuclear-Localized mRNA. Molecular Therapy - Nucleic Acids, 2017, 8, 158-168.                                                                                                      | 2.3 | 25        |
| 15 | Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life.<br>JCI Insight, 2016, 1, .                                                                                                                                                                 | 2.3 | 31        |
| 16 | Mechanical Strain Causes Adaptive Change in Bronchial Fibroblasts Enhancing Profibrotic and Inflammatory Responses. PLoS ONE, 2016, 11, e0153926.                                                                                                                                                  | 1.1 | 16        |
| 17 | Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1002-L1013.                                                                            | 1.3 | 65        |
| 18 | Rhinovirus-16 Induced Release of IP-10 and IL-8 Is Augmented by Th2 Cytokines in a Pediatric Bronchial Epithelial Cell Model. PLoS ONE, 2014, 9, e94010.                                                                                                                                           | 1.1 | 34        |

HANS MICHAEL HAITCHI

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sox17 is required for normal pulmonary vascular morphogenesis. Developmental Biology, 2014, 387, 109-120.                                                                                                             | 0.9 | 61        |
| 20 | Foxa3 Induces Goblet Cell Metaplasia and Inhibits Innate Antiviral Immunity. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 301-313.                                                          | 2.5 | 122       |
| 21 | CaMKII Is Essential for the Proasthmatic Effects of Oxidation. Science Translational Medicine, 2013, 5, 195ra97.                                                                                                      | 5.8 | 54        |
| 22 | Spiruchostatin A Inhibits Proliferation and Differentiation of Fibroblasts from Patients with<br>Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 687-694.                   | 1.4 | 57        |
| 23 | Regulation of <i>A Disintegrin And Metalloprotease-33</i> Expression by Transforming Growth Factor-β. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 633-640.                                  | 1.4 | 19        |
| 24 | A disintegrin and metalloprotease (ADAM) 33 protein in patients with pulmonary sarcoidosis.<br>Respirology, 2012, 17, 342-349.                                                                                        | 1.3 | 7         |
| 25 | Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium.<br>Developmental Biology, 2011, 358, 79-90.                                                                            | 0.9 | 50        |
| 26 | Airway Epithelial Transcription Factor NK2 Homeobox 1 Inhibits Mucous Cell Metaplasia and Th2<br>Inflammation. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 421-429.                        | 2.5 | 73        |
| 27 | Intersections between Pulmonary Development and Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 401-406.                                                                              | 2.5 | 57        |
| 28 | Contribution of Bronchial Fibroblasts to the Antiviral Response in Asthma. Journal of Immunology, 2009, 182, 3660-3667.                                                                                               | 0.4 | 34        |
| 29 | Induction of a disintegrin and metalloprotease 33 during embryonic lung development and the influence of IL-13 or maternal allergy. Journal of Allergy and Clinical Immunology, 2009, 124, 590-597.e11.               | 1.5 | 21        |
| 30 | Understanding the pathophysiology of severe asthma to generate new therapeutic opportunities.<br>Journal of Allergy and Clinical Immunology, 2006, 117, 496-506.                                                      | 1.5 | 133       |
| 31 | ADAM33 Expression in Asthmatic Airways and Human Embryonic Lungs. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 958-965.                                                                     | 2.5 | 97        |
| 32 | Asthma: Clinical Aspects and Mucosal Immunology. , 2005, , 1415-1432.                                                                                                                                                 |     | 2         |
| 33 | Characterization of Ciliated Bronchial Epithelium 1, a Ciliated Cell–Associated Gene Induced During<br>Mucociliary Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2004, 31,<br>491-500. | 1.4 | 28        |
| 34 | New strategies in the treatment and prevention of allergic diseases. Expert Opinion on Investigational Drugs, 2004, 13, 107-124.                                                                                      | 1.9 | 10        |