
Huiyuan Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiology of Stress, 2021, 15, 100363.	4.0	5
2	Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. Journal of Neuroscience, 2019, 39, 2649-2663.	3.6	29
3	Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. Physiology and Behavior, 2019, 204, 355-363.	2.1	6
4	GLPâ€1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. Journal of Comparative Neurology, 2018, 526, 2149-2164.	1.6	27
5	Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. Journal of Neuroscience, 2017, 37, 362-370.	3.6	1
6	Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss. Journal of Neuroscience, 2017, 37, 362-370.	3.6	35
7	Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Structure and Function, 2016, 221, 2375-2383.	2.3	44
8	Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. Journal of Neuroscience, 2015, 35, 10701-10714.	3.6	73
9	Distribution of glucagon-like peptide 1-immunopositive neurons in human caudal medulla. Brain Structure and Function, 2015, 220, 1213-1219.	2.3	28
10	Longitudinal Assessment of Food Intake, Fecal Energy Loss, and Energy Expenditure After Roux-en-Y Gastric Bypass Surgery in High-Fat-Fed Obese Rats. Obesity Surgery, 2013, 23, 531-540.	2.1	37
11	Yohimbine anxiogenesis in the elevated plus maze requires hindbrain noradrenergic neurons that target the anterior ventrolateral bed nucleus of the stria terminalis. European Journal of Neuroscience, 2013, 37, 1340-1349.	2.6	23
12	Vagal Innervation of the Hepatic Portal Vein and Liver Is Not Necessary for Roux-En-Y Gastric Bypass Surgery-Induced Hypophagia, Weight Loss, and Hypermetabolism. Annals of Surgery, 2012, 255, 294-301.	4.2	56
13	Modulation of taste responsiveness and food preference by obesity and weight loss. Physiology and Behavior, 2012, 107, 527-532.	2.1	97
14	Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Annals of the New York Academy of Sciences, 2012, 1264, 36-48.	3.8	52
15	Obesity surgery and gut–brain communication. Physiology and Behavior, 2011, 105, 106-119.	2.1	74
16	High-fat intake induced by mu-opioid activation of the nucleus accumbens is inhibited by Y1R-blockade and MC3/4R- stimulation. Brain Research, 2010, 1350, 131-138.	2.2	32
17	A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R720-R728.	1.8	64
18	Meal-Induced Hormone Responses in a Rat Model of Roux-en-Y Gastric Bypass Surgery. Endocrinology, 2010, 151, 1588-1597.	2.8	134

HUIYUAN ZHENG

#	Article	IF	CITATIONS
19	The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. Journal of Pediatric Surgery, 2010, 45, 987-995.	1.6	78
20	Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1273-R1282.	1.8	155
21	Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R845-R854.	1.8	36
22	An expanded view of energy homeostasis: Neural integration of metabolic, cognitive, and emotional drives to eat. Physiology and Behavior, 2009, 97, 572-580.	2.1	129
23	Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in μ-opioid receptor-deficient mice. European Journal of Pharmacology, 2008, 585, 14-23.	3.5	28
24	Neural Systems Controlling the Drive to Eat: Mind Versus Metabolism. Physiology, 2008, 23, 75-83.	3.1	88
25	Orexin Signaling in the Ventral Tegmental Area Is Required for High-Fat Appetite Induced by Opioid Stimulation of the Nucleus Accumbens. Journal of Neuroscience, 2007, 27, 11075-11082.	3.6	223
26	Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E964-E976.	3.5	87
27	Eating for pleasure or calories. Current Opinion in Pharmacology, 2007, 7, 607-612.	3.5	94
28	Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiology and Behavior, 2006, 89, 517-524.	2.1	118
29	Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. Journal of Comparative Neurology, 2005, 485, 127-142.	1.6	126
30	Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochemistry and Cell Biology, 2005, 123, 147-156.	1.7	108
31	Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R247-R258.	1.8	156
32	Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell and Tissue Research, 2003, 311, 277-287.	2.9	140
33	Appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1436-R1444.	1.8	120
34	Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1773-R1781.	1.8	66