Jie Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1726212/publications.pdf

Version: 2024-02-01

840776 940533 22 905 11 16 citations h-index g-index papers 22 22 22 797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Edge Computing for Autonomous Driving: Opportunities and Challenges. Proceedings of the IEEE, 2019, 107, 1697-1716.	21.3	364
2	Computer Architectures for Autonomous Driving. Computer, 2017, 50, 18-25.	1.1	125
3	Enabling Deep Learning on IoT Devices. Computer, 2017, 50, 92-96.	1.1	123
4	Creating Autonomous Vehicle Systems. Synthesis Lectures on Computer Science, 2017, 6, i-186.	0.3	64
5	A Unified Cloud Platform for Autonomous Driving. Computer, 2017, 50, 42-49.	1.1	49
6	A Survey of FPGA-Based Robotic Computing. IEEE Circuits and Systems Magazine, 2021, 21, 48-74.	2.3	38
7	LoPECS: A Low-Power Edge Computing System for Real-Time Autonomous Driving Services. IEEE Access, 2020, 8, 30467-30479.	4.2	28
8	A Container Based Edge Offloading Framework for Autonomous Driving. IEEE Access, 2020, 8, 33713-33726.	4.2	28
9	Autonomous Last-Mile Delivery Vehicles in Complex Traffic Environments. Computer, 2020, 53, 26-35.	1.1	18
10	An edge streaming data processing framework for autonomous driving. Connection Science, 2021, 33, 173-200.	3.0	15
11	Creating Autonomous Vehicle Systems, Second Edition. Synthesis Lectures on Computer Science, 2020, 8, i-216.	0.3	12
12	Ï€-BA: Bundle Adjustment Hardware Accelerator based on Distribution of 3D-Point Observations. IEEE Transactions on Computers, 2020, , 1-1.	3.4	11
13	LCRC: A Dependency-Aware Cache Management Policy for Spark. , 2018, , .		7
14	Energy-Efficient Data Caching Framework for Spark in Hybrid DRAM/NVM Memory Architectures. , 2019, , .		6
15	Π-RT: A Runtime Framework to Enable Energy-Efficient Real-Time Robotic Vision Applications on Heterogeneous Architectures. Computer, 2021, 54, 14-25.	1.1	6
16	<mml:math altimg="si6.svg" display="inline" id="d1e326" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\overline</mml:mi></mml:math> -Hub: Large-scale video learning, storage, and retrieval on heterogeneous hardware platforms. Future Generation Computer Systems, 2020, 102, 514-523.	7.5	3
17	A Dependency-Aware Storage Schema Selection Mechanism for In-Memory Big Data Computing Frameworks. International Journal of Parallel Programming, 2019, 47, 502-519.	1.5	2
18	On Designing Computing Systems for Autonomous Vehicles. , 2021, , .		2

#	Article	IF	CITATIONS
19	A Task-Aware Fine-Grained Storage Selection Mechanism for In-Memory Big Data Computing Frameworks. International Journal of Parallel Programming, 2021, 49, 25-50.	1.5	1
20	Streaming Data Priority Scheduling Framework for Autonomous Driving by Edge. , 2021, , .		1
21	CSAS: Cost-Based Storage Auto-Selection, a Fine Grained Storage Selection Mechanism for Spark. Lecture Notes in Computer Science, 2017, , 150-154.	1.3	1
22	Application of Autonomous Driving Technologies in the presence of COVID-19: to reduce occupational exposure and potential nosocomial infections of care workers, during transportation in Emergency Medical Service (EMS)., 2021,,.		1